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We study collider phenomenology of pair produced new heavy vector bosons further
decaying into top pair plus bottom pair production in proton-proton collisions at
CERN LHC with 13 TeV center of mass energy in the presence of new color
octet vector boson. While the final signal is challenging to study due to high
number of jets and combinatirocal background, it nevertheles presents an ample
opportunity to explore due to large production cross-section and energetic jets.
We show that the the invariant mass of the leading two jets and the leading b-jet
pr distribution can be used to distinguish the signal from the Standard model

background efficiently.

I. INTRODUCTION

The Standard Model (SM) of particle physics has been very successful in explain-
ing the particle physics phenomena. Still there are questions that are not adequately
addressed in the SM. These include baryon antibaryon asymmetry, neutrino oscilla-
tions and in some extent the scale of electroweak symmetry breaking. Currently the
only experiments that may shed light on these questions are the LHC up to 14 TeV
center of mass energy. One of the leading hypothesis on the baryon asymmetry of the
universe is the electroweak baryogenesis. The requirement of this frame work is that
the electroweak phase transition from symmetric state to spontaneously broken one
should be strongly first order and to do so one must have: ¢./T. 2 O(1), where ¢. is
the vacuum expectation value of the Higgs field at the critical temperature 7. of the

thermal bath. Unfortunately, it does not work in the SM where it implies the Higgs
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mass to be 70 GeV which is in a direct conflict with the measured value by ATLAS
and CMS collaborations at the LHC [1]. Therefore new particles which modify the
Higgs potential through quantum corrections or new shape for the Higgs potential
are needed. Colored particles within the reach of the LHC experiments are one such
possibility [2]. In doing so, Higgs pair production can be modified substantially See
for example [3-6)).

In the present work, we study the phenomenology of pair produced new heavy
vector bosons with color quantum numbers. The decay channels we examine are
the pair produced heavy vector bosons that dominantly decay into third generation
quarks. If the new vector boson has a negligible coupling to light generation a single
vector boson via quark-antiquark fusion is not the leading prodcution mechanism.
Instead the gluon fusion induced pair production becomes dominant since a massive
single vector particle cannot be produced from two massless vector bosons due to the
Landau-Yang theorem. The production of a single leptoquark is through coupling
to the light generations and therefore highly model dependent. The analysis of such
events are quite complicated and in the current work we present (i) identification of
one them by their decay products, (ii) top and bottom quark event simulation for
13 TeV center of mass energy at the LHC. In the final part we present prelimenary

results of the top and bottom quark signals at the detector level.

II. PAIR OF NEW VECTOR BOSONS

A. Analysis

For our analysis we use Madgraph 5 [8], a matrix element generator that simulates
high energy proton-proton collision at the CERN-LHC. We use Feynrule software [7]
to have a Madgraph implementable model file . Feynrule is a Mathematica package
in which user provides the Lagrangian of the model under the consideration. If it
is properly implemented the Feynrule package generates all the necessary Feynman
rules for the model (such as the SM and its extension) in the UFO format that can
be readily used in the Madgraphb environment. The Lagrangian of our model is as
follows:

L

»C:»CSM—4

VY + gris "t Vau f, (1)



where V), is the new color-octet heavy vector boson.
In order to simulate the full process in Madgraphb, we use Pythia 8-hadron
showering [9] and Delphes detector simulation tools [10], where the latter two are

integrated within Madgraph5 environment. The steps of our computation are given

as follows:

First step: Matrix level

Matrix elements of our events are calculated using the MadGraph5. The invariant

mass distribution of matrix level top pair production at the LHC is shown Figure(1).
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FIG. 1: Result of matrix level

Second step: Parton level

Using the results of matrix element, hadron showering is done by Pythia. The Pythia
provides the results in the CERN root file format.
Third step: Detector level

To seperate our events from the SM background we use suitable kinematic cuts.

Finally, the latest results are processed using CERN-ROOT program.
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B. Event selection strategy

We first discuss four-jet decay channel, where our signal process is VV* — bbbbjjj7.
Jets are clustered using anti-k7 algorithm[12] with R = 0.5 and we require jets to
have pr > 50GeV and |eta| < 4.9.

Events must have at least 4 jetsee, at least one of which must be b-tagged. The
leading b-tagged and light jets must have pr > 250 GeV, and the subleading light
jet must have pr > 80 GeV. Furthermore, the signal mass is optimized by the scalar
sum paramter Hy = |pr, ;| > Fmy[11].

We have to reconstruct final decay products in order to study new vector boson

decay. There are three main steps to reconstruct.

e Two jets have been reconstructed to yeald a W boson candidate and the result

is displayed in Figure 2.

e Three jets (including W boson plus b jet) have been reconstructed to yeald top

quark candidate that is showed in Figure 3.

e Finally, the four jets (including top quark plus leading b jet) have been used for

reconstructing the vector boson candidate.
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FIG. 2: Reconstruction of W boson candidate

In order to reconstruct W boson, we need to choose the mass range (65 < m;; < 95)
around the W boson mass value. In addition we reconstruct top quark events using
the previously reconstructed W boson candidate with b-jet candidates. There are

totally 12 combinations, but we displayed only 2 combination here as an example.
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FIG. 3: Reconstruction of Top quark candidate

These results are shown in Figure 2 and Figure 3. When the reconstructed top quark
mass result is compared to that of the CMS result[l], it is clear that we have to
improve kinematic cuts and find matching jets correctly. This is mainly due to large
combinatoric background, which may lead to permutations of jets that give a false
signal accidentally. This background is very difficult to suppress in general. On the
other hand, the case of boosted top production the situation is comparatively simpler,
since double and triple jets from the boosted top quark and W boson candidates are
identified as single jet in the detector. Therefore, we only need to consider leading
and sub-leading b-tagged and light jets. The reconstructed results from these leading
and sub-leading jets are shown in Figure 4. As we can see, in this case, top quark

and W boson are reconstructed in a much clean manner.
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FIG. 4: Reconstruction of W boson and top quark with leading jet.
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C. New vector boson production

First, we perform a simulation at hadron level, where we choose the new vector
boson mass to be My = 700 GeV and it is in SU(3) color octet representation. The

hadron level result with such vector boson extension is shown in Figure 5.
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FIG. 5: Hadron level result of vector boson

We have scanned by the mass of the new vector boson and the results are shown
as the cross—section versus the vector boson mass. The results for charged particle
production cross-section and its decay to top and bottom quarks are shown in Figure 6.

The neutral case is shown in Figure 7.

'ICII T T T T T T T T T T T T T T T T T
i 1000 - .
10° 1 100 :
= 1000} | ]
= =
(=] =}
10+ 1 .1
- 01} ;
04} ]
I . 10—2 | .
500 1000 1500 500 1000 1500
M(GeV) M(GeV)

FIG. 6: Production Cross-section and decay to ¢, b quarks at the matrix level for charged

vector boson
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FIG. 7: Production Cross-section and decay to t, ¢ quarks at the matrix level for neutral

heavy boson.

Consideration of b-tagged jet PT is shown in Figure 8 with the SM and the extended
SM. SM leading b-jets PT is dramatically decreasing as energy range is increasing. In
our model, leading b-jet PT is different than SM. It is a interesting phenomenology
to check new vector boson at the LHC, only using leading b-jets PT.
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FIG. 8: Leading b-jet PT in SM compared to the extended SM.

In the SM, top-bottom, two b-tagged and two light jet invariant mass distribution is
shown in Figure 9 compared with case of new vector boson decay to top and bottom
quark. It is clear that, from mass range of 500 GeV, event number is increased

significantly, and there is possibility to check this scenario at the LHC experiments.
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top-bottom invariant mass
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FIG. 9: Invariant mass of top-bottom quark candidate in SM compared to the extended SM.

III. CONCLUSION

In the current paper, we have presented our study on the production of new vector
boson pairs at the LHC and their decay to the third generation quarks. As an example
we have chosen the results from the top and bottom quark. In our extended SM, we
have shown that a new color octet vector boson, that is predicted to exist in number

of SM extendedmodels possible to measure at the LHC.
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We investigate the decomposed photodisintegration cross section for the “Be(1/21)
state, which is important to realize the properties of the unbound 1/2% state of
9Be. The recent experimental data are discussed to be explained by an o + o + n
model. In order to calculate the photodisintegration cross section into @ + o + n

three-body final states, the complex scaling method is used.

I. INTRODUCTION

The complex scaling method (CSM) [1-5] is a well-established technique in wide
areas of physics especially in areas of resonance studies in nuclear physics. At the
beginning, its advantage was mainly explained by the superior description of the
resonance states of composite systems. Nowadays, it is successfully utilized for getting
information of unbound and scattering states.

We apply the CSM to an @« + « + n three-cluster model to understand the
structure and (7, n) reaction for low-lying states in Be. For the purpose of this work
we investigate the unbound nature of the 1/2% state of °Be and study the decomposed
photodisintegration cross section between the excited 1/2% and ground 3/2~ states.
In this study, we discuss the recent experimental data [6, 7] of the photodisintegration

cross section and structure of the 1/21 state in the “Be system.
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II. METHOD

The Schrodinger equation is solved by utilizing the orthogonality condition model

(OCM) [8] for the @ + a + n (?Be) three-body system as following
HUY. = E, T, (1)

where J™ is the total spin and parity of the « + « + n system and v is the state

index. The complex-scaled Schrodinger equation is given as
HUY(9) = EJU5(9). (2)

The complex-scaled Hamiltonian and wave function are given as
H? =U@)HU~'(6) and T4(0) = U(H)TY, (3)
respectively. The complex scaling operator U(#) transforms the relative coordinate €

as
U(9) : &€ — e, (4)

where 6 is the scaling angle being a positive real number.
The Hamiltonian for the relative motion of the o + o + n three-body system for
9Be is given as

3 2
f{ = Ztl - Tc.m. + Z Vozn(gz) + Vaa + VPF + V37 (5)
i=1

i=1

where t; and T ., are kinetic operators for each particle and the center-of-mass of the
system, respectively. The interactions between the neutron and the i-th « particle is
given as Vi, (€;), where &, is the relative coordinate between them. We here employ
the KKNN potential [9] for V,,. For the a-a interaction V,, we employ a folding

potential of the effective NN interaction [10] and the Coulomb interaction:

9 4e?
Vaa(r) = voexp (—ar?) + Terf (Br), (6)

where v9 = —106.09 MeV, a = 0.2009 fm~2, and 5 = 0.5972 fm~!. The pseudo po-
tential Vpp = M@ pp){Ppp| is the projection operator to remove the Pauli forbidden
states from the relative motions of a-« and «-n [8, 11]. The Pauli forbidden state
is defined as the harmonic oscillator wave functions by assuming the (0s)* configura-
tion whose oscillator length is fixed to reproduce the observed charge radius of the «

particle. In the present calculation, X is taken as 10° MeV.
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To discuss the photodisintegration of ?Be, it is important to reproduce the breakup
threshold into the o + o + n system. In the present calculation, we introduce the
a + o + n three-body potential V3 to reproduce the binding energy of the “Be ground
state, Eq, measured from the o + o + n threshold. The explicit form of V3 is given

as

Vs = vgp exp (—pp?), (7)

where p is the hyper-radius of the o + o + n system.

We solve the eigenvalue problem given in Eq. (2) with Gaussian expansion
method [12], and obtain the energy eigenvalues and eigenstates (their biorthogonal
states) as {E%} and {¥%(0)} ({¥%()}), respectively. Using them, we define the
complex-scaled Green’s function G%(E;&,€¢') as

£/> _ N\FE0) T (6)

1

E—H?

G'(B;€.6) = <£‘

In the derivation of the right-hand side of Eq. (8), we use the extended completeness
relation, whose detailed explanation is given in Ref. [13-15]. It is noticed that we
take into account outgoing boundary conditions for all open channels of a three-body
system in the form of complex energy eigenvalues E¢. The complex-scaled Green’s
function in Eq. (8) enables us to describe the scattering observables for many-body
systems, such as the photodisintegration cross section.

We calculate the cross section of the photodisintegration of “Be(3/27) + ~ —
a + «a 4 nin terms of the multipole response. The cross section is expressed as the

following form;

2 2X2—1
7 (B = CPOHD (EV) dB(EX, E-)

AN+ D2\ he dE, ®)
where E, is the incident photon energy and B(E)) is electric transition strength with
the rank A. We here calculate the photodisintegration cross section from the ground
3/27 state to 1/21 states in “Be and consider only the E1 transition. Using the
CSM and the complex-scaled Green’s function in Eq. (8), the E1 transition strength
is given as

dB(E1,E,) 1 100 v
dE, _2Jgs+12;<\1’g5”(0 ) (E1)||\IJ1/2+(9)>

1 /s, .
x = (U0 OO (B0
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FIG. 1: Calculated photodisintegration cross section of “Be in comparison with the experi-
mental data. The black (solid) line represents the cross section calculated by using an attrac-
tive three-body potential with vsy = —17 MeV. The experimental data below I, = 2.2 MeV
are taken from Refs. [6] and [7]. The arrow indicates the threshold energy of the *Be(0") + n

channel.

where Jys and W, represent the total spin and the wave function of the ground state,
respectively. The energy F is related to E, as E = E, — E,. From the Eqgs. (9) and

(10), we finally obtain the photodisintegration cross section as

1673 _ dB(E1,E.)
O-El(E’Y) = 9hc E’Y dE s : (11)
vy

III. RESULTS AND DISCUSSIONS

The CSM has been utilized to investigate the Be(1/21) state [16-19]. But in the
previous works, the 3/27 ground state of “Be is calculated as 2.16 MeV from the
a + « + n threshold without three-body potential. The KKNN [9] and folding [10]
potentials are effective potentials for « + n and o + «, respectively, which reproduce
well the experimental data in the low energy region and it is widely applied in the
analysis of two- or three-body systems.

In the present calculation, we fix the ground-state wave function obtained with the
three-body potential with vz, = 6.57 MeV and p = 0.1 fm~2 in Eq. (7) to reproduce
the experimental binding energy of the ground state as 1.574 MeV measured from
the three-body threshold [10]. In FIG. 1, we show the calculated cross section using
Eq. (11) in comparison with the two sets of the observed data which commonly have

peaks just above the ®Be + n threshold.
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To discuss the observed sharp peak just above the ®Be + n threshold in the photo-
disintegration cross section, we change the strength, vsp, for the 1/2% state to fit the
observed data but its range is fixed as the same as used in the ground state. We here
take the strength as vs, = —17 MeV for the 1/27 state and obtain the cross section
as shown as the black (solid) line in Fig. 1. Our result reproduces the observed peak
by using the attractive three-body potential. It is seen that the calculated cross sec-
tion rapidly increases just above the ®Be 4 n threshold and there is negligibly small
strength below this threshold.

We investigate the origin of the low-lying peak above the ®Be + n threshold in
detail. For this purpose, we show the distribution of the energy eigenvalues of the
9Be(1/21) states obtained by using the CSM in Fig. 2. In the CSM, continuum
states are obtained along the branch cuts which start from the threshold energies
and are rotated down by 20. A resonance is obtained as a solution with complex
energy of E? = E, —iI'/2 isolated from the continuum ones. On the other hand, the
virtual states and broad resonances, which are located on the second Riemann sheet
covered by the rotated first Riemann sheet, cannot be obtained as the isolated pole in
CSM. The contributions from these states to the cross section are scattered into the

continuum states rotated on the 20 lines. In Fig. 2, we show the distribution of the
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FIG. 2: Distribution of energy eigenvalues of the “Be(1/2") states measured from the
a + a + n threshold with scaling angle 8 = 15 degrees. The three-body potential with
vsp = —17 MeV and g = 0.1 fm™? was employed. The red (solid), blue (dashed), and green
(dotted) lines represent the branch cuts for & + a + n, *Be(0") + n, and *He(3/27) + «

continua, respectively.
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FIG. 3: The decomposition of photodisintegration cross section of the & + « + n system.
The vap, = —17 MeV is applied. Upper panel: The distribution of eigenvalues are given in
the complex energy plane. Lower panel: The decomposed photodisintegration cross section

corresponding to the branch cuts for the &« + a + n, *Be(0") + n and "He(3/27) + «

continuum states are shown.

energy eigenvalues for the Be(1/21) states calculated with vs, = —17 MeV, which
reproduces the observed peak as shown in Fig. 1. In the present calculation, we find
no resonances in the energy eigenvalue distribution. All energy eigenvalues are located
on the 26-lines, corresponding to the branch cuts for the o + o + n, 8Be(01) + n,
and "He(3/27) + « continuum states. Comparing the calculated photodisintegration
cross section of the “Be(1/2") state with the recent new experiments [6, 7], we find
that vy, = — 17 MeV gives a good agreement as shown in Fig. 1. From this result, it
is shown that there is calculated no cross section in energies below the 8Be4-(01) 4+ n
threshold. The sharp peak of the cross section, indicates that if this peak is caused by
a resonance state, its width is smaller than 0.2 MeV. However, our eigenvalue solutions
of the CSM the Schrodinger equation indicate that there is no such a sharp resonance.
To solve this problem, we investigate the properties of the photodisintegration cross
section peak in more detail.

To solve a broad resonance or a virtual state, it is necessary to calculate by em-

ploying large values of . However, in the present &« + « + n calculations, it is
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FIG. 4: The same as in Fig. 3 for vs; = —18 MeV.
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FIG. 5: The same as in Fig. 3 for vsy = —19 MeV.

difficult to keep the numerical accuracy for a f-value larger than 45°. Therefore, we
cannot discuss a resonances of I' > 2E,./v/3 and a virtual state by applying the CSM.
To overcome this problem, we investigate the decomposed photodisintegration cross

section. When such a broad resonance state and a virtual state exist, it is expected
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FIG. 6: The same as in Fig. 3 for vsy = —20 MeV.

that peaks appear in the decomposed photodisintegration cross section even if they
are calculated with a small value of 6.

We first check the decomposed photodisintegration cross section applying wide
range values (from 30 MeV to —30 MeV) of the vz, strength and look for the ap-
propriate vs strength for the 1/2% state. Then, we calculate the photodisintegration
cross section using the F'1 transition strength with vg, = —17 MeV. Using classified
eigenvalues into two- and three-body continuum states which are shown in Fig. 2,
we investigate the detailed structures of the decomposed photodisintegration cross
section calculated with different vs strengths. The results of the decomposed pho-
todisintegration cross section with different vs; are shown in Figs. 3—6. From lower
panels of Figs. 3—6 a), it is seen that the contribution of the decomposed photodis-
integration cross section for different vs, from two- and three-body continuum states
are shown the similar distribution with each other. We can see the contributions of
the decomposed photodisintegration cross section for vg, = —17, — 18, — 19, —20
MeV have a dominant component of the ®Be-+(0") 4+ n continua which is boxed in
upper panels of Figs. 3—6. But the « + « + n three-body and *He(3/27) + n
two-body continuum states do not contribute strongly.

In order to understand the ®Be+(0") + n contribution to the photodisintegration
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cross section, we check contribution of each eigenstates which are boxed in the upper
panels of Figs. 3—6 b). It can be seen that there is an eigenstate which gives highest
contribution to the photodisintegration cross section. The eigenstate is circled in the
upper panels of Figs. 3—6 b). The decomposed photodisintegration cross section by
adding the eigenstate to &« + « + n three body continuum states are presented
in the lower panels of Figs. 3—6 ), and we can see large differences each figures. In
the case of vy, = —19 MeV and —20 MeV, the « + « + n three body continuum
states give dominant contribution to the photodisintegration cross section. It is seen
that the eigenstate contributes dominantly when we apply a deep attractive vs,. This

result indicate that the eigenstate have unbound characteristic.

IV. CONCLUSION

We investigate the character of the 1/21 state of “Be using the decomposed photo-
disintegration reaction with the & + o + n three-body model and the CSM. The cal-
culated decomposed photodisintegration cross section into the 1/2% states are shown
to have a strong dependence on the strength of the three-body potential for the 1/2%
state. From the decomposition of the calculated photodisintegration cross section, it
is shown that the ®Be + n continuum states dominate the photodisintegration cross
section to the 1/27 states. But when we apply a deep attractive potential strength to
calculation of the photodisintegration cross section and to change choice of the eigen-
state from two-body continuum states to three-body continuum states, « + o + n
three body continuum states give dominant contribution to the photodisintegration

Cross section.
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Controlling magnetism of transition metal atoms by pairing with 7 electronic states
of graphene is intriguing. Herein, through first — principle computation we explore
the possibility of switching magnetization by forming the tetrahedral sp® - metallic
d hybrid bonds. Graphene multilayers capped by single — layer cobalt atoms can
transform into the sp® — bonded diamond films upon the hydrogenation of the
bottom surface. While the conversion is favored by hybridization between the sp®
dangling bonds and metallic d,2 states, such a strong hybridization can lead to the
reorientation of magnetization easy axis of cobalt adatoms in plane to perpendic-
ular. The further investigations identify that this anisotropic magnetization even
can be modulated upon the change in charge carrier density, suggesting the pos-
sibility of an electric — field control of magnetization reorientation. These results
provide a novel alternative that would represent tailoring magnetism by means of

degree of the interlayer hybrid bonds in the layered materials.

I. INTRODUCTION

The modern field of material science has centered on unique properties of one —
to — few atom thick two — dimensional (2D) materials. A prototypical example of
one — atom thick 2D system that exhibits a various of fascinating phenomena is
graphene [1, 2]. In particular, the engineering of the chemical and physical properties
of graphene by decorating with functional or metallic atoms is the most intriguing

[3, 4]. Conversely, the presence of graphene substantially alters the electronic and
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tElectronic address: Tsogbadrakh@num.edu.mn



21

magnetic properties of the transition metal atoms, which depends on the degree of
hybridization between the metal d orbitals and graphene 7 bands [5].

Exploring a thermally stable perpendicular magnetization or magnetic anisotropy
(PMA) in otherwise nonmagnetic graphene is at the heart of spintronics research.
Yet, there have been a few remarkable studies on the magnetic anisotropy of transi-
tion metal atoms, mainly cobalt, on graphene [6-9]; for example, unexpectedly large
PMA up to an order of 100 meV was predicted in cobalt dimer — benzene pairs [6].
On the other hand, individual Co atoms adsorbed onto graphene on a Pt (111) ex-
hibited an in — plane magnetic anisotropy [10]. Interestingly, subsequent experiments
have shown that the preferable magnetization axis of the Co adatoms on graphene is
the underlying metal substrate dependence: out — of — plane in Ru (0001) and in —
plane magnetization in Ir (111) [7]. The authors attributed this magnetization reori-
entation to the modified hybridization between the Co(3d) and graphene p bands by
the different graphene/metal interactions (chemisorbed graphene/Ru and physisorbed
graphene/Ir and /Pt) [7, 10]. In more recent studies, through C(p.) - Co(d.2) hy-
bridization, the presence of fullerene molecules reverses magnetization easy axis of
the underlying Co films in plane to perpendicular [§].

In addition to these remarkable findings, the promising alternative for tailoring the
ferromagnets anisotropy seemingly resides in the use of even stronger bonding features
between the tetrahedral sp® and metallic d orbitals [4]. In this article, we propose such
argument where the magnetization easy axis of the freestanding Co (0001) monolayer
is reversed from in plane to perpendicular by forming the sp® - d.» hybrid bonds,
which is driven by the chemical functionalization of the bottom surface of graphene
layers. The further investigations identify that this anisotropic magnetization even
can be modulated upon the change in charge carrier density, suggesting the possibility

of an electric — field control of magnetization reorientation.

II. METHODOLOGY

Density — functional theory (DFT) calculations were performed using the Vienna
ab initio simulation package (VASP) [12], and exchange — correlation interactions
were described with the generalized gradient approximation (GGA) formulated by
Perdew, Burke, and Ernzerhof (PBE) [13]. The modeled structure shown in Fig. 1(b)

contains a single layer of cobalt atoms deposited on AB — stacked (Bernal — type
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stacking) bilayer graphene, the bottom surface of which is chemically treated with
hydrogen atoms. For a reference, the one — side hydrogenated bilayer graphene is
illustrated in Fig. 1(a). An energy cutoff of 400 eV and a 21 x 21 x 1 k — mesh
were imposed for the lattice and ionic relaxation, where forces acting on atoms were
less than 1072 eV /A. Spin — orbit coupling (SOC) term is included using the second
— variation method employing the scalar — relativistic eigenfunctions of the valence
states [14]. Magnetic anisotropy energy (MAE) is obtained based on the total energy
difference when the magnetization directions are in the xy — plane (E!l) and along
the z — axis (E1), MAE = Ell - E+. A dense k — points of 41 x 41 x 1 was used for

MAE calculations, which was sufficient to get reliable results.

III. RESULTS AND DISCUSSION

We first investigated the structural stabilities of the Co/graphene heterostructure
under the bottom surface functionalization. Simulating experimental generation of
gas phase atoms of hydrogen that can cover up to half the surface of graphene [15],
one of every two atoms of the bottom surface of bilayer graphene is chemisorbed to
a hydrogen atom, as shown in Fig. 1(a). The three principle adsorption sites of hy-
drogen on graphene are taken into account so that to define the most stable atomic
structure: namely the hollow, bridge, and top sites. The total energy calculations
show that the most stable adsorption site of hydrogen atoms is the top site. After
the chemisorption of hydrogen atoms, the two graphene layers can be separated by
the van der Waals (vdW) distance or can form interlayer covalent bonds [4]. It has
been already indicated in our previous study that the latter structure, i.e., interlayer
graphene bonds, is not favored upon the one — side hydrogenation [4]. By contrast,
the presence of metal substrate results in the thermodynamically stable sp® — bonded
carbon films over the metal — free hydrogenated graphene layers [4]. This is also the
case for the present system where the other surface of bilayer graphene is covered by
the monolayer cobalt atoms (See Fig. 1(b)). Similarly, the two — side hydrogena-
tion (or fluorination) of graphene layers can lead to the favorable C — C interlayer
bonds (not shown). Furthermore, we would like to note that the transition barrier
from graphene layers to sp® — bonded carbon films on metal substrate upon the func-
tionalization was found to be negligibly small [4], which is expected for the present

system. It was also reported that no energy barrier is required for the physisorption
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— chemisorption transition of the two — side fluorinated BN multilayers [16].

Figure 2 shows the formation energies (Hy), defined as presented in Ref. [4], of
the one — side hydrogenated graphene layers with (filled) and without metal adatoms
(unfilled symbol) relative to the pristine bilayer graphene. We also present the Hy of
the Co adatoms deposited on the pristine bilayer graphene before hydrogenation in
Fig. 2. The results indicate an importance of the presence of metal adatoms in the
interlayer formation. We therefore attribute the C — C and C — Co chemical bonds
to the saturation of the otherwise unstable sp® dangling bonds with metal surface
states. The driving force for this is the hybridization between the C(sp®) and Co(d.2)
orbitals at the strong chemical Co — C bonds [4, 11]. Furthermore, such sp® — bonded
diamond — like carbon structure with metal and functional atoms is estimated to be
thermodynamically and structurally stable for the thicknesses of up to eight carbon
layers, analogues to that in the functionalized graphene on metal substrate [4]. Similar
results were also found for the two — side fluorinated sp® — bonded BN multilayers
[16].

To better appreciate the strong sp® - d.» hybridization, we plot the electronic
band structure and density of states (DOS) of the bonded C and Co atoms in Figs.
3(a,b) and 3(c,d) for the physisorbed and chemisorbed Co/graphene, respectively. The
electronic features of the pristine Co and graphene layers remain almost unchanged
in the physisorption: the majority (minority) spin states of the ferromagnetic atoms
are nearly (partially) filled (unfilled), and a band crossing with Dirac cone shape
at the Fermi level of graphene (not shown). On the other hand, as seen in Fig.
3, the feature of common peak structures between the Co(d.2) and C(p.) states is
apparent throughout the energy level in the chemisorption configuration, indicating
the strong orbital hybridization therein. In particular, the existence of these bands
in the majority spin state right at the Fermi level is prominent. Such metal -induced
gap states (MIGS) can penetrate into up to several — layer thicknesses of graphene,
but the C — site induced magnetism (0.08 15) is confined only to the interface layer.

Figure 4(a) shows the calculated MAE of the physisorbed and chemisorbed
Co/graphene. The MAE changes its sign from negative (— 0.62 meV) to positive
(0.78 meV) at the physisorption — chemisorption (or sp* — sp®) transition, which are
also well reproduced for the thicker graphene layers. The former and latter stand
for the preferable direction of magnetization parallel and normal to the film plane,

i.e., PMA. This indicates that the magnetization easy axis of the Co adatoms can be
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switched and undergoes a transition from an in — plane to perpendicular magnetiza-
tion upon the formation of C(sp*) — Co(d) hybrid bonds, as schematically illustrated
in the inset of Fig. 4(a). We further inspect the relationship between the orbital

moment mo and MAE according to Brunos model [17]:

¢
MAE = ——2-A 1
4up Mo (1)

where ( is the strength of SOC and Amg = ml)' —mg. The calculated Amg of the Co
adatoms physisorbed and chemisorbed on graphene are shown at the bottom in Fig.
4(a), where Amgo < 0 and Amg > 0, respectively. These results adequately obey the
Bruno relation: the easy magnetization axis coincides with the direction that has the
largest orbital moment.

The sp? — sp® transition evolves in different energy landscapes around the Fermi
level, which consequently modulates the MAE. To convince this argument, we follow
the recipe of the second — order perturbation theory by Wang et al. [18]: MAE is

determined by the SOC between occupied and unoccupied bands as

<W,|L|T, > 2 —| <UL, |T, > |?

MAE:CQ? Lol > P o< BlLalt > o)
where U, (U,) and E, (E,) represent eigenstates and eigenvalues of occupied (un-
occupied) states, respectively. Relative contributions of the nonzero and matrix ele-
ments are < U, [L.[0,. >=1, < U, |L. T2 o >=2, < U.2|L,|T,. . >= V3,
<oy Le|Wysyy. >=1 and < Woa_2|L,|¥,. /. >= 1, where the positive and neg-
ative contributions to MAE are characterized by L, and L, operators, respectively
[18].

In Fig. 4(b), we assign the energy difference of the largest and closest PDOS peaks
to the Fermi level in the most relevant orbital states, d../,. and d.2, as E, — E,.
The energetics and MIGS were mainly attributed to the p. - d.2 hybridization in the
majority spin state, as addressed in Fig. 3. However, from energy — and k — resolved
band analyses, no appreciable coupling of the spin — up occupied and unoccupied d
— orbital states appears near the Fermi level. This is in line with the previous full
— potential studies on a series of 3d — to — 5d systems [19, 20|, in which the spin
channel decomposition terms of MAE that involve the spin — up (1) state, MAE(1T 1)

and MAE(1 |), were not significant. For the Co adatoms physisorbed on graphene,
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there are two strong SOC states between the d.2 and d orbitals in the minority

wz/yz
— spin state, which leads to the negative MAE through < ¥.:|L.|¥,.,,. > , where
E.:—E,.;,. =052 and 1.35 eV. When the sp? transforms to the sp® phase, the
C(sp®) - Co(d) hybridization splits these minority — spin d.= states into the low —
energy occupied peak at - 2.3 eV and high — energy unoccupied peak at 1.6 eV.
Thus, the negative contributions to MAE decrease; instead, the positive contribution
through < W,.|L.|¥,. > with E,. — E,. = 0.91 ¢V becomes more dominant. From
the k — resolved MAE and spin — down band analyses, these SOC pairs that involve
the d,.,,. and d.> bands are predominant around the K — M line points, at which
the dominant contributions of the MAE are also prominent.

The engineering of the MAE by Fermi level shifts further suggests exploring a cru-
cial effect of the external gating on magnetization reorientation. To anticipate this
phenomenon, we analyze the Amg of the chemisorbed Co/graphene as a function of
excess electron per atom, which reflects to the externally injected charge carrier in
a positive gating, in Fig. 5(a). Remarkable, the Amg changes its sign from positive
to negative at about 0.1 e/atom. This is due to the nearly flat d.» band that ap-
pears around 0.5 eV above the Fermi level at the K — M points, while the degenerate
dy sy orbital states become filled. Thereby, the SOC pairs between these filled d.. /.
and empty d.» bands are formed at the K — M, which should provide the negative
MAE(k) therein, as for the case of the physisorption but with the level reversal. As
expected, we find that the total MAE changes its sign from the PMA to an in — plane
magnetization at around 0.3 e/atom, as seen in Fig. 5(b). These results are of con-

siderable interest in the area of electrically controlled magnetism and magnetoelectric

phenomena [21-23].

Iv. CONCLUSION

To summarize, our first — principles computation shows that the magnetization
easy axis of the monolayer Co (0001) can reorient from in — plane to perpendicular,
when the one — side hydrogenated graphene layers are introduced, by forming the sp?
- d,2 hybrid bonds. The chemical functionalization of the bottom surface of graphene
layers leads the transformation into thermodynamically stable sp® — bonded diamond
carbon films, which in turn can develop the strong chemical tetrahedral sp® — metallic

d bonds. Moreover, it is found that the perpendicular spin orientation of the Co
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adatoms chemisorbed onto the sp? — bonded diamond layers is switchable by altering
the density of charge carriers through the application of gate voltage. We thus expect
that the present study would provide another novel alternative that would represent
tailoring magnetism by means of degree of the interlayer hybrid bonds in the layered

materials.
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Physisorption Chemisorption

FIG. 1: (Color online) Side views of the optimized atomic structures for the one — side hy-
drogenated double layer graphene (a) without and (b) with monoatomic — thick Co adatoms
on the other side of graphene surface. The hydrogenation of the outer surface of graphene
layers induces the interlayer bonding between the graphene layers. The gray, brown, and

blue spheres indicate the C, H, and Co atoms, respectively.
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|
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FIG. 2: The formation energy Hy of the physisorbed and chemisorbed Co/graphene (filled
circles). The corresponding result for the chemisorbed bilayer graphene without Co adatoms
is shown in open circle (metal — free). Total energy of the Co adatoms on bilayer graphene

before functionalization is taken as reference energy (hydrogen — free).
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FIG. 3: (Color online) (a) and (c¢) Spin — up and (b) and (d) spin — down band structures
and density of states of the bonded C and Co atoms of the hydrogenated sp® graphene layers
with Co coverage, respectively. In (a) and (b), the symbols superimposed over the band
lines with green, orange, and blue colors represent black, orange, green, red, and blue colors
represent the ps, py, and p. states of the C atom. In (¢) and (d), the green, red, orange,
blue and black denote the dyuy, dsz, dy., d,2 and d,2_ 2 orbitals of the Co adatom. The size

of the symbols is proportional to their weights and the Fermi level is set to zero energy.
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FIG. 4: (Color online) (a) MAE (upper) and Amg (lower) of the pristine Co monolayer and
Co adatom chemisorbed on the hydrogenated bilayer grahene. (b) Schematic diagram of the

single — electron levels of the Co adatom chemisorbed on the hydrogenated bilayer graphene.
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FIG. 5: (Color online) (a) Amgo and (b) MAE versus the external electron injection of the
Co adatom chemisorbed on the hydrogenated bilayer graphene.
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Using Monte-Carlo techniques, we have implemented a program that simulates
static meson system in SU(3) lattice gauge theory. As a check of the correctness of
the program we simulated measurements using our program and then computed
some observables which are narrowly defined before in similar works. In this work
we have presented expectation value of the plaquette, 2 x 1 Wilson loops and
Polyakov loops as a function of inverse temperature besides the published values
of these observables. The comparisons between the observables and its published

values are shown that our program works properly.

I. INTRODUCTION

The Monte-Carlo simulation of pure lattice gauge theories are currently playing an
important role in the study of confinement and the understanding its dynamics. In
particular, four dimensional SU(3) lattice gauge theory!'[? is suitable tool for the
problems of the strong interaction, because of the strong interactions are described
by QCD, and SU(3) gauge theory. Nevertheless many research works such as ref.
[4] and [3] that studied the problems of the strong interactions, were simulating in
the SU(2) lattice gauge theory. The similarity of SU(3) vacuum structure with the
one of SU(2) and also in order to simplify the simulation researchers had been using
quenched approximation of SU(2) pure gauge theories without matter field.

Our previous program were simulating the flux tube between a quark and an an-
tiquark at the high temperature in the simpler SU(2) gauge theory®-6 This pure
SU(2) gauge theory contains already essential features of flux tube of the ¢7 system,
but its much simpler than SU(3), and takes much less computational time for the sim-
ulation. So in this program we considered pure SU(2) gauge theory which correspond
to the case of static quark sources. Nowadays, we need to convert our program into
SU(3) lattice gauge theory in order to investigate confinement and strong interactions

more narrowly.
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In this work we have converted and improved our previous SU(2) program into
more accurate program that is based on SU(3) lattice gauge theory. It is reasonable
to improve our data sample and hence make a more accurate determination of the
flux tube of the ¢7 system. And it is the beginning of many further studies such as
flux tube of the baryon like systems, a glue ball and asymptotic freedom.

After this part we will assume some lattice observables that are computed by our
SU(3) program. In the program we works in a four dimensional lattice in the SU(3)
lattice gauge theory. There is a link variable that connect the nearest neibours i and
j on the lattice. The link variable is 3 x 3 unitary unimodular matrices U;; of the
group SU(3), with the condition that U;; = (U;;)~1. We define the partition function
on the lattice by

29) = [ |T1a0s | eapt-5'% (1= 5 Retotia)) )
ij O N
where £ is the inverse temperature given by 8 = 2N,./g3 with go is bare coupling
constant and N. is the number of color, N. = 3. The action defined by Ug =
Ui;U;xUriUy;, which is the product of four link variables around the plaquette. From
the eq. (1), expectation value of plaquette is given by
1

P =
0=

ReTrUg. (2)

When an arbitrarily p by v closed rectangular contour is denoted by C' and U¢ is the
product of link variables around C', the expectation value of any Wilson loops will be

defined via
1
W, = FCReTrUC. (3)

In order to reduce computational time we restricted the program, one can compute
plaquette and 2 x 1 Wilson loops that is defined by the 1 by 2 closed link closed
rectangular counter. For the study of ¢7 system, Wilson loops no longer play the key

role. It will be replaced by Polyakov loops which are gauge invariant quantity

N-
L(7) = NiCTrH Ua(T 7). (@)

This expression is invariant under periodic gauge transformations. Physical value of
the Polyakov loops have a simple physical interpretation that is the free energy of

static g7 pair, one is denoted by qu(ﬁ, WZ) It can be obtained from the correlation
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function of two such loops with the base at 7 and m, having opposite orientations
that T(7, 71) =< L(W)L(mt) > . Time propagation of the two static quarks sitting
in the ends of the flux tube are represented by Polyakov loops L(0) and its conjugate
LT(R), which are located a distance R from each other on the lattice. Flux tube
profiles can thus be extracted from the correlation of a plaquette with the Polyakov
loops

B [< L(O)LN(R)P,,(ny) >
fulns) =53 | L)L (m) > (5)

by varying the distance n, and the orientation of the plaquette with respect to
the Polyakov loops. Six different f,, combinations such as fo3 = 1/ 2(—Bﬁ),
fis = 1/2(=B1), fiz = 1/2(=B1), fia = 1/2(E}), fas = 1/2(E}), foa = 1/2(E7),
define the six components of electric and magnetic field.

In this work we have presented expectation values of plaquette, Wilson loops and
Polyakov loop, because of these observables defined most basic baselines. Other ob-

servables which are interrupted physical quantities, are shown in further works.

II. THE PROGRAM AND ITS ALGORITHM

We changed our previous SU(2) program into more accurate program that is based
on SU(3) lattice gauge theory. Firstly, we have changed mathematical operations
such as a addition, subtraction, multiplication, division that are defined between
2 X 2 matrices, real numbers and complex numbers into operations between the 3 x 3
matrices and the numbers. In the figure IT example of the changed operation shown.
This figure shows the CT " code of multiplication of two matrices for gauge group of

the SU(2) and SU(3). Other codes are presented in appendix. Secondly, we converted

prec_complex tmpl,tmp2;

tmpl=y. el2;
tmp2=y. ell;

tmpl=x. ell*y, ell-x. el2*conj(tmpl);

tmp2=x. ell*y. el2+x. el2*conj(tmp2);

su2 (tmpl,tmp2);

FIG. 1: The C"" codes of multiplication of two matrices. Left figure is a code of multipli-
cation between two 2 X 2 matrices and right figure is a code of multiplication between two

3 X 3 matrices
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the codes that are generated and unitarized 2 x 2 matrices and found determinat
and trace of the 2 x 2 matrices, into the code for 3 x 3 matrices. These codes are
shown in the appendix. End of all this work we changed a Monte-Carlo updates
from the overrelaxed heatbath algorithm!™ that is used in the previous code into
the overrelaxed Metropolis!'. In Monte-Carlo simulations one has to generate SU(3)
matrices with the Boltzmann weight given by eq.(1). Therefore we considered the
Metropolis algorithm ref. [10] for the SU(3) program. Schematically the algorithm

proceeds as follows:
1. Randomize an input U.
2. Tterate until equilibrium is attained.
3. Generate U* by performing a random trial move from U
4. Compute transition probability Pr(U — U™*) = min{1, %}.
5. If: random(0,1] < Pr(U — U*) then U — U*.

After the Metropolis we used four overrelaxation steps in ref. [11] to obtain a new
gauge configurations. For the overrelaxation algorithm we change nothing and used
in our previous work. Finally the SU(3) program became 14 CTT header files and
these includes 3400.

The simple algorithm is shown in the figure 2. This figure shows the processes
that initialize and thermalize link variables and compute the expectation values of
the plaquette eq.(2), 2 x 1 Wilson loops eq.(3), Polyakov loops eq.(4) and polyakov
loops - plaquette correlation eq.(5) function on the 4 dimensional lattice in the SU(3)
lattice gauge theory.

Then the program computes the expectation value of the plaquette, 2 x 1 Wilson
loops, Polyakov loops and their correlation functions and print every data of these
quantities. The figure 2 presents some results of the simulation.

After all the work the SU(3) program worked and printed results, showed in figure
II. There is the parallel magnetic field strength 1/ 2(—Bﬁ) and the parallel electric
field strength 1/2(Eﬁ) averaged 20000 iteration at the R = 4a and 8 = 25. We can
see only the shape of the flux tube profile with the two peak which is shown in figure
II. Nevertheless it has a same shape with the theory, we need to check the program

more narrowly for the wumerical value. That’s why we are doing this research.
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Lattice{l,, fi) = 233
> Lattice(l,, ) > sU(3)
Uiy (n, 7) = Lattice(l,,, )

= Uy (x, 7)€ Metropolis
Uy (x, 7)€ overrelaxation x 4

v
L
Y .
f

L ,f/ pol[n] = L(x) /
|

By(d) = fas, B (d) = fis]
Ey(d) = fig EL(d) = fz:/
/ By(d) = fi2.E (d) = faf

FIG. 2: Schematic structure of the program
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FIG. 3: The parallel magnetic field strength 1/ 2(—Bﬁ) a) and the parallel electric field
strength 1/2(Eﬁ) b) at the R = 4a and § = 25.

III. RESULTS AND COMPARISON

In this work we have presented results that is simulated on lattices of volume 6% and
8% at 18 values of the 4 from 1.0 up to 9.5 and compute expectation value of plaquette,
2 x 1 Wilson loops and Polyakov loops as a function of 3. These expectation values
have been compared with the similar expectation values which is printed in ref. [8]

and [9]. As a check of the correctness of the code, in figure 4 and 5, we compare the
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expectation values of the plaquette and 2 x 1 Wilson loops with the similar values of
the ref. [8]. Then we compare expectation value of Polyakov loops with the Polyakov

loop of ref. [9].

09 T T T T T T T T T
08 I~ . A a 4 -A . n
N |
07 | N .
0.6 | . et .
| |
A 05 ~ | -
o ™
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' .t [1] 6, lattice
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FIG. 4: Expectation value of plaquette as a function of 5 on the lattices of volume 6* and

84,
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FIG. 5: Expectation value of 2 x 1 Wilson loops as a function of inverse temperature from

the lattice of volume 6*.

The figure 4 shows the expectation value of plaquette as a function of 5 on lattices of

volume 6* and 8*. There are three different expectation values of the plaquette which
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are simulated in three individual program. The red square points and the blue circle
points denote the expectation value of the plaquette, which simulated our program,
respectively on the lattices of volume 6% and 8. From these two data points we can see
that the expectation value of plaquette doesn’t depend on lattice size. The plaquette
data which are presented in ref. [8] on the lattice of volume 6%, are denoted by down
triangle in the figure 4. These points had a same value with our plaquette value. It
shows that our program well defined the lattice field. In the figure 4 the up triangle
points denotes the expectation value of the plaquette which are presented in the ref.
[9] on the lattice of volume 8°. These points have a identical value with our plaquette
data when 5 > 4.5, besides they have a different value with our data points. In the
ref. [9] the expectation values are computed in five dimensional lattice, nevertheless
our values computed in four dimensional lattice. Thats why the expectation values
of plaquette had different each other.

In the figure 5, there are squared red points that denote our Wilson loops value and
up triangle green points that denote the expectation value of the 2 x 1 Wilson loops
in ref. [8]. We compare the expectation value of the 2 x 1 Wilson loops as a function
of B which is simulated our program with the expectation value of the Wilson loops
as a function of 8 which is presented in ref. [8]. From the comparison, we can see

that there is no difference. This shows our program define lattice properly.
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FIG. 6: Expectation value of Polyakov loops as a function of § from the lattice of volume

8t
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The figure 6 presents the average expectation value of Polyakov loops as a function
of B from the lattice of volume 8*. The down triangle points denote the Polyakov loops
which is cited from the ref. [9]. The red squared points presents the value of Polyakov
loops which is simulated our program. These squared points has a more smaller value
than triangle points. This shows that lattice dimension affects the expectation value

of Polyakov loops.

IV. CONCLUSION

We have changed and improved our previous SU(2) program into more accurate
program that is based on SU(3) lattice gauge theory. In this work we have defined
the base quantities using this new program according to the initial conditions that
are defined in ref. [8] and [9]. Therefore we simulated the program on the lattices
of volume 6* and 8* at the value of # from 1.0 up to 9.5. From these simulation,
we computed the expectation value of plaquette, 2 x 1 Wilson loops and Polyakov
loops as function of 5. Our expectation values of plaquette and the Wilson loops
are almost same values with the expectation values which are presented in the ref.
[8]. The expectation values in ref. [9] are simulated in the five dimensional lattice,
whereas the expectation values that are presented in the ref. [9] and computed in our
program have different numerical values and similar functional dependency on the 3.

From these comparisons, we conclude that our program works properly.
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V. APPENDIX

In this appendix we have shown the figures of the codes that are expressed operation
between matrices, real and complex numbers. The right hand side figures are in 2 x 2

besides the right hand side figures are in 3 x 3.

su2 &x, su2 &y)

su2 (x._elll+y._ell,x._el2+y, el2);

su3 &y}
prec float &x

i ell,-y. el2};

[prec_float tr df Su2 &x) prec_float tr d| su3 &x)
{
prec_float (2* real(x. ell) ); prec float (real(x. ed@)+real(x. ell)+real(x. e22));
> }

FIG. 12: The codes for trace
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FIG. 13: The codes for finding determinant

FIG. 14: The codes for untarize

su2 tilde( su2 &x) tmpl.
{ tmpl.
tmpl.

su2 tmp; tmpl. e

tmpl.
tmpl. e

tmp. ell = conj(x. ell);
tmp. el2 = - x._el2; tmp.

tmp.
tmp.

tmp.

(tmp);

(tmp);

FIG. 15: The codes for finding reverse matrices
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sitesmu 1] = new tink;

new Llink;

FIG. 16: Metropolis code for 3 x 3 lattice gauge

theory



The roughening transition at finite temperature

G. Enkhtuya, Ch. Sodbileg, P. Battogtokh
Institute of Physics and Technology,
MAS, Ulaanbaatar 13330, MONGOLIA

In this work, we have intended to observe the roughening transition at finite tem-
perature which occurs at zero temperature in confined phase. We have confirmed
that the width of the flux tube increases with ¢q separation and also showed that

the width rises steeply when the coupling constant has reached at a certain value.

I. INTRODUCTION

It is important to understand the mechanism of the quark confinement phenomenon
for study of Quantum chromodynamics (QCD). Confinement is a phenomenon that
for large separation, the potential between the quarks increases linearly with the sep-
aration, whereas for short separation, the potential depends on the coupling constant
logarithmically, in which Coulomb-like potential dominates as the same as the dipole
field of the electrodynamic. The coefficient which is the linearly increasing part of the
potential is called that string tension (o).

The study of QCD at the finite temperature and density is relevant for the heavy-
ion collision experiments and for the astrophysical problems. One can see reviews in
Refs.[1-4] that as temperature increases, the potential decreases due to the tempera-
ture dependent string tension but keeps rising as the ¢¢ separation increases and that
the slope of the potential decreases as the temperature increases.

The linear potential causes on the appearance of flux tube which derived between
a quark and an antiquark and is the force between the quarks which are at a certain
distance from each other. By numerical simulation, one can measure this force only in
case of relatively small value of ¢ separation. Distance between quark and antiquark
depends on lattice spacing a and choosing a is very sensitivity and one of the difficult
problems. If one chose too large a, it will be difficult to see continuum physics and if
a is too small, one cannot expect to see asymptotic form of the force on lattice with
small extent.

The static g potential form in lattice unit can in principle be determined by cal-
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culating the following limit:

V(R) =~ Jim {% In W (R, T)} (1)
where W (R, T) is the expectation value of the Wilson loop with spatial and temporal
extension R and T, respectively.

The expectation value of the Wilson loop has behaviour that it determines by area
law (¢ RT') in confined phase while by perimeter law (o(R + 1)) in deconfined phase.

Assuming that W(R,T) has the form
W(R, T) _ e—aRT—oz(RJrT)Jrfy. (2)

We can isolate the o by studying the Creutz ratios|5]

W(R,T)W(R—1,T — 1)
W(R,T — L)W (R — 1,T)) ‘

WR.T) = —In ( 3)

In other words, if the Wilson loop depends on R and 7' in the way given by Eq. 2,
then y(R,T) will be independent of these variables, and will coincide with the string
tension.

To date, value of string tension in physical units is still not yet reliably established
and its dependence on other physical quantities has studied by lattice numerical sim-
ulation with high precision. In particular, ¢ is very sensitive for gauge groups and it
gives different values for each dimension of gauge groups. The mechanism of quark
confinement in both QCD and SU(N) pure gauge theories is rather analogous. The
value is N = 3 for QCD. Even though, SU(N) pure gauge theory gives us a better
way to understand the confinement well. Namely, for N > 3, new forms of the flux
tube which contains different string tensions have appeared.

Recently, in 2012, Cardoso and Bicudo[6] have extracted the string tensions from
color averaged free energy of a quark and an antiquark pair and for different spatial
lattice volumes, it showed in Fig. 1. They concluded that for the lattice with small
extent, the string tension increases with volume and the influence of volume on the
string tension disappeared for larger volume.

Also, they have investigated critical curve of ¢ as a function of temperature in [6].
They observed that the string tension at 0.57, is practically equal to the oy at zero
temperature and further, the string tension decreased as temperature increased.

During the attempts to determine value of the string tension, a transition observed

in which the behaviour of the string tension was changing in confined phase. This
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FIG. 1: The string tensions as a function of the spatial lattice size[6].

transition is called that roughening transition and this phenomenon is a kind of
surface roughening transition. The roughening is well known phenomenon in three
dimensional statistical mechanics that explains delocalization between the two phases
with enough energy[7]. This phenomenon has investigated for abelian groups U(1)
and Z(N) and non-abelian groups SU(N) in three, four and arbitrary dimensions
[8-12]. When this transition occurred, the width of the flux tube completely diverges
and the surface of the flux tube delocalizes, but the value of the string tension is not
zero and still finite near the roughening temperature according to theory of lattice
QCD.

This phenomenon is not a transition from confined phase to deconfined phase.
Because, if Wilson loop characterized by the area law and the string tension is not
zero, then one assume the quark confinement still does.

Since the confinement is directly related to the formation of flux tube, it is necessary
to study the relationship of the flux tube and other physical quantities to understand
the phenomenon of confinement well.

In this work, our purposes were to study how the width of the flux tube depends
on the coupling constant i. e. on the temperature. In other words, does the width of
flux tube diverge at finite temperature? What is the value of the coupling constant
if it does? At zero temperature, it diverges when S ~ 1.9. Is the value of coupling
constant the same as the one at zero temperature? Or not? We have conducted our

research to get answers for these questions.
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This article is as follows. Chapter 1 describes fundamental theory, Chapters 2 and
3 describe brief introduction of the strong coupling expansion and the flux tube. It
also contains the first main results. In Chapter 4, we present our measurement and

the results. Finally, Chapter 5 includes the conclusion.

II. STRONG COUPLING EXPANSION

Several interesting aspects, like dynamical mass generation, quark confinement etc.
are inaccessible to a perturbative treatment and require non-perturbative methods.
One of these is the method of strong-coupling expansions, which amount to expansions
in powers of the lattice coupling constant (). Strong-coupling expansions are tied to
the lattice and cannot be derived directly for a continuum theory.

In contrast to perturbation theory, which only yields asymptotic expansions, the
strong-coupling expansion has a finite range of convergence. Within this range the
strong-coupling expansion can be employed by lattice gauge theory to obtain infor-
mation about quark confinement. Also this method can be used to verify results of
Monte Carlo simulation. Strong coupling expansion is well-tested method in describ-
ing phase transitions.

As explained in introduction section, the Wilson loop criterion is very important
since it allows us to distinguish different phases which with and without quark con-
finement, by values of gauge invariant observables.

With regard to the analogy between Euclidean quantum field theory in terms of
functional integrals and statistical mechanics we have seen that the bare coupling
constant squared g? plays the role of an analogue temperature. Lattice gauge theory
at strong coupling thus corresponds to a statistical system at high temperatures, i.e.
small 3. Therefore the well-known method of high-temperature cluster expansions of
statistical mechanics suggests itself to be applied to this situation.

Behaviour of vortex free energy is analogy to expectation value of Wilson loop which
obeys an area law behaviour at zero temperature in confined phase. The coeflicient
of the area is equal to string tension between the static sources.

Miinster has calculated that strong coupling expansion up to order 82 from vortex
free energy by SU(2) pure lattice gauge theory for four dimension at zero temperature

in 1981[13]
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Also, Creutz has obtained values of the string tension by means of the SU(2) theory
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from Monte Carlo simulation[14]. The two results above together as a function of
coupling constant plotted in Fig. 2. The figure also contains exponential curve of weak
coupling expansion predicted by renormalization group that expressed in the formula:
exp (—?—7{ (8 — 2)) . To compare with the twelfth order result, the lowest order results
of the strong coupling expansion also has included in the figure. According to this
figure, the MC data follows the exponential curve of the weak coupling expansion in
the narrow “window” 2.2 < < 2.5. In other words, the string tension transforms
from the strong coupling behaviour to the weak coupling behaviour. Besides, one can
see that the curve of the strong coupling expansion when calculate up to the twelfth
order follows the curve of the weak coupling expansion. This is roughening transition.
Namely, it proved that the transition occurs when reached at a certain value of 5 by

either theory or results of simulation.
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FIG. 2: The string tension as a function of the coupling constant|[13].

In 2008, Miinster et.al. has calculated the first several order of the strong coupling
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expansion for finite N, and i.e. at finite temperature[15]
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It is necessary to compare the results of the strong coupling expansion at finite

temperature with results of simulation for further study.

III. WIDTH OF THE FLUX TUBE

One can also determine signal from a structure and a formation of the flux tube
which is string tension is translating from strong coupling regime to weak coupling
regime. Therefore, we necessary to assume quantity that the width of the flux tube.
We consider transverse profiles of energy density in the tube the physical width of the
flux tube. The energy density of the color field can be expressed by[16]

E(x) o< {qq|TrE*(x)|qq) — (qqlqq)(TrE*(x)). (6)

When we regularize the theory on lattice this equation becomes:

E(r) x VO : (7)

where W(C') is Wilson loop and P, is plaquatte. At finite temperature, we can
consider a pair of Polyakov loops. The lattice operator the becomes:

(LO)L(R)P:) — (L(O)L(R))(P:)

£() o ZOL®)

(8)

where L(0) and L(R) are two Polyakov loops separated by R lattice spacing and again
P, is a plaquette localized in x. Hence, we can calculate the transverse profile of the

energy density

D? = D2(Ry2) = 4 }Z dﬁigfg ). (9)

In 1981, Liischer et. al. has calculated the width of the flux tube up to twelfth order

by the method of the strong coupling expansion at zero temperature[16]

92 o 37724 ,, 1412551 |, } 10)

D2:4 426_8
o0 {“ LTI 1215
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They have plotted the expansion as a function of the coupling constant. This figure
is shown in Fig. 3. In the figure, ¢ is rising monotonically, we well-known as the
fluctuation of the effective string in confined phase, from zero at 8 = 0 to about 0.5
until 5 = 2. But, for 8 2 2, rises steeply. This value coincides with the coupling
constant which is string tension extracted from MC simulation carried out by Creutz

that is from strong to weak coupling behaviour.

SU(2), v =4

10 5 20
p=4/g°

FIG. 3: The width of the flux tube as a function of 3[16].

Also in this paper[16], they have assumed that o - D% should approach a constant
value for B 2> 2, if D2, < oo in the continuum limit. Then they has derived o - D%

using the strong coupling series that calculated in [13]

-1 20 1 2179 2
D2)~! = 1—2w? — 4t [ 2 ) pad (24 2
(0D5) 4u41nu{ “ Y3 +1nu e 405 +1nu
244903 48 16
8
_ _ _ b 11
“ ( 1215 Inu (1nu)2)+ } (11)

The corresponding 6th (a) and 8th (b) order curves are shown in Fig. 4. Rather than
approaching a constant, (¢ D2 )1 seems to vanish at about 8 ~ 1.9. This value is
just below the crossover region 3 > 2. Here, one assumes D2 is diverges and this
value of the coupling constant named roughening value (8g). At the roughening point
the width of the flux tube is completely delocalized, but it has a finite intrinsic width
and tension.

Our purposes were to determine the width of the flux tube by processing our sim-
ulation data and to observe its dependence on the interquark distance and on the
coupling constant. We fitted a coulombic[17]

al
(as + 2%)3

(12)
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FIC. 4: (6D2,)~" versus . a and b denote 6th and 8th order curves respectively[16].

and an exponential
bre b2®L (13)

fit functions to the transverse profiles of chromoelectric and chromomagnetic fields
results and then calculated the width of the flux tube by the integration of Eq. 9
using the fit parameters. The all components of the chromomagnetic field and the
perpendicular component of the chromoelectric field are approximately equal, but the
parallel component of chromoelectric is higher than the others[3]. Therefore, we fitted
only to the parallel components of the electric and magnetic fields. In our case, the
distribution of magnetic field is closely described by the coulombic fit functions, while

for the electric field, it needs an addition exponential function. We found that the fit

functions
1 a1
—_p? S S— 14
26 ”(T,ZCJ_) (CLQ‘I—ZC%_)?’? ( )
iEQ(r D e m—— R (15)
20 [N (az + xi)?’
describe our data better. The physical width of the flux tube is given by
6
-21)2
a ‘D= —5 16
)2 (16)

in terms of the fit parameters.
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IV. MEASUREMENTS AND RESULTS

The simulations performed on lattice of size 16 x 82 x 4 and the distance between

the quark and the antiquark were 4a — 8a. For N, = 4, the critical value of coupling

constant is 8. = 2.2985 £ 0.00006 which is phase transition from the confined to

the deconfined phase and in order to observe roughening phenomenon we should

perform measurement in confined phase. Also, we have to compare our results with

the coupling constant which is value of the roughening transition at zero temperature.

To meet the two criteria and to do our simulation, we chose § = 1.6, 1.7, 1.8, 1.9, 2.0,

2.1, 2.2, for the values of the coupling constant. The number of the measurements

was 400000 and we processed data.

TABLE I: Results for the fit parameters and the width of the flux tube (¢ 2D?)

r/alB a1 as b1 ba a—2D? 2
1.6]8.36(15.25) 2.55(1.79) -0.56(31) |0.87(44) |7.92(37) 0.154
1.7]3.49(14.00) 0.94(1.19) 3.19(3.44) [1.35(69) [3.24(94) 0.0034
1.8]-616.14(4.90) 24585.9(6.5E4 16) | -2.70(3.29) |2.56(1.36) [0.91(22.12)  [0.0092

4 |1.9[9708.2(2.005+04)  |77.80(60.36) 0.23(02) [3.72(1.73)0.35(6.12)  [0.0062
2.0-5136(9227) 66.98(43.47) 0.13(1)  [0.95(9) [6.642.27)  |o.6075
2.1[1.52(42) 4.55(52) 0.053(1) [1.29(5) [3.61(93) 0.2695
2.2[0.57(14) 2.93(26) 0.0100(6) |0.65(4) [14.20(1.47) |5.17
1.6]2.451-05 0.09(62.93) -0.09(4)  |-0.04(16) |3750(96)  [0.02656
1.7]-9.05K 105 316.59(1737.00) |0.17(7)  0.097(17) [740.74(45.34) [0.0534
1.8{10138.7(1.504E+04) [37.62(21.1) 0.21(8) [0.17(14) |207.61(19.76) |0.0042

6 |1.9]3.39(14.28) 0.94(1.26) -3.24(2.83) [1.23(16) [3.96(3.12)  [0.0515
2.0[0.008(2) -0.47(7) 0.22(34) [0.76(8) |10.38(2.52) [0.3165
2.1[165(430) 26.66(26.39) 0.02(1)  [1.97(1.89) [1.54(23.02) [0.2059
2.2[0.43(82) 4.90(3.39) 0.010(2) |0.62(15) [15.60(5.80) |[1.36
1.6(2.54E107(3.58E108) |646(3041) 0.20(4)  [0.02(8) |15000(96)  |0.0684
1.7]-1.68(4.67) 2.38(2.36) 0.01(10)  |1.22(9.73)|4.03(191.41) [0.0991
1.8]18.54(29.09) 5.23(54.32) 0.33(7)  [0.33(9) |0.55(6.54) |0.0754

8 [1.9]-180864(1.52E106) [202.02(560.9)  [0.06(1)  |0.04(10) [113.42(2.08) [0.0514
2.0[-65.46(165.7) 12.05(11.31) 0.020(21) |-0.10(23) [600(55.2)  [0.0842
2.1|-6.51E406(4.44E407) [560(1224) 0.050(9) [o.10(7) [495(15.27) [o.1238
2.2[0.22(30) 3.73(1.79) -0.003(1) |-0.01(12) [15000(144) [0.23

The resulting values of the fit parameters and the width of the flux tube that

calculated from the Eq. 16 are displayed in the Table I. In this work, we did not

converted our results into physical units and expressed the results in units of lattice
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FIG. 5: The width of the flux tube as a function of the distance between the quark and the

antiquark.
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FIG. 7: The width of the flux tube as a function of the coupling constant.

spacing a. The width of the flux tube as a function of lattice qg separation for each
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coupling constant is shown in Fig. 5. In Fig. 6, we plotted above all figures together
in one plane. The width of the flux tube increases linearly depend on interquark
distance, showed in [18]. From the two figures, our results coincide with the result of
the work above generally.

We plotted the width of the flux tube as a function of the coupling constant for
the values r = 4a, 6a, 8a of the gq separation in Fig. 7. In Fig 8, we summarized
graphics of the Fig. 7. According to the figures, small increase in the width observed
at § = 2.2 for r = 4a and one can say the width is stable from 8 = 1.6 to 2.1 then

rises steeply when it reaches at 5 = 2.2 for r = &a.

16000 — -
14000 | \ 6a [

8a /
12000 | | /
10000 | | / |
o, 8000 f \ / :
o
© 6000 \ / :
4000 \ / 1

2000 B / T
Or B L &—8 ""ﬂﬁiiié B
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FIG. 8 The width of the flux tube as a function of the coupling constant.

V. CONCLUSION

In this work, we investigated the dependence of the appearance and behaviour of
the flux tube on the coupling constant and on the distance between two quarks at
finite temperature in confined phase.

Since the configurations created by simulations have much fluctuations in lattice
gauge theory at small value of 5, our results have much statistical noises and was
difficult to make any conclusion. However, we have tried to make the following con-

clusion.
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Based on our results, we confirmed again that the width of the flux tube increases
when the interquark distance increases. In the range of values of the coupling con-
stants, the width of the flux tube is monotonic and it rises steeply at a certain values
of the coupling constants. So, we concluded that the width of the flux tube diverges
at finite temperature. This value was 8 = 2.2 for our case and in other words, for
N, = 4. The value of the coupling constant corresponds to 0.797.. Therefore, 5 = 1.9
at zero temperature is different at finite temperature.

For further study, it is neccessary to perform simulations around the 0.797. on
larger lattices. Also, we will determine string tension and its dependence on the

coupling constant.
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Discrete variable representation method calculation of the

electronic structure of noble gas atoms
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Science and Technology, Ulaanbaatar 14191, Mongolia
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We have been calculated ground state charge densities and energies of noble gas
atoms through a single time dependent quantum fluid Schriédinger equation. By
using imaginary - time, the Schrédinger equation has been transformed into diffu-
sion equation. This equation numerically solved through discrete variable repre-
sentation (DVR) method. Instead of the usual finite difference method the radial
coordinate is discretized using the discrete variable representation constructed from
Coulomb wave functions. Calculation was performed with use of Mathematica 7.0

programm.

I. INTRODUCTION

Numerical treatment of many - electron systems is extremely computationally de-
manding task. Density functional theory (DFT) calculation of many - electron systems
is opened broad perspective for researchers. Though it uses only three coordinates,
the number of equations to solve are increases with the number of electrons to be
treated. Instead the quantum fluid density functional theory (QFDFT) solves only
one time dependent generalized nonlinear Schriodinger equation (GNLSE) for many -
electron systems. Using imaginary time for GNLSE, one could reach lowest energy
state of the system, after tens of iterations.

GNLSE had been solved previously for calculation of ground state properties of
noble gas atoms by finite difference method [1] and also by generalized pseudospectral
method (GPSM) [2]. In the present study we used the Coulomb wave function discrete
variable representation (CWDVR) method [3] for solution of the GNLSE for the noble

*Electronic address: Tsogbadrakh@num.edu.mn
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gas atoms.

II. THEORY AND METHODOLOGY

In this section we shall consider the numerical solution of the time - dependent

Schréodinger equation for atomic systems to be

1

L O (r,t)
2

VAt vepp () () = i (1)

The entire time - evolving interacting system is described by the complex - valued

hydrodynamical wave function
Y(,t) = p(7, ) /2eX D = R(F, )X, (2)

However, one can write equation (1) in imaging time 7 and substitute 7 = —it, ¢

being the real time, to obtain, which closely resembles a diffusion - type equation:

3V + v (IRETH = - 2D )

R(r,t) is the diffusion function and the diffusion process is governed by ves(p).

veff(p) contains both classical and quantum potentials

Vef f (p) = Vee (p) + Une (p) + Vze (p) + Ucorr(p) + Vext (p) (4)

The terms on the right - hand of Eq.(4) are as follows: the first is the inter - electron
repulsion term, the second is the electron - nuclear attraction term, the third is
exchange - correlation term, fourth term is the nonclassical correction, last term
arises from interaction with the external field (in the present case, this interaction is

7€ro).

III. NUMERICAL SOLUTION: DVR METHOD

The diffusion equation (3) can be written as

o) + V(7 0] R = - 2D, )

We shall extend the second - order split - operator technique in spherical coordinates

[4] for the time propagation of the Schrédinger equation:

R(7,t + At) o e~ Hult/2o=V(ntt A2 A = HA/2 R(f ) 4 O(AF?) (6)
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Here split operator technique is expressed in terms of Hy, which is chosen to be the
radial kinetic operator and V the remaining Hamiltonian. Matrix form of Hamiltonian

operator is following:

[H]ij = (D) + V()5 ©
with
(Da)s =2 (E+2)i=) 0
Do)y = i # 9

The eigenvalues and eigenfunctions of H will be denoted as ), and Oki, respectively.

The propagation of a given radial wave function R(r,t) in order H can now be ex-

pressed as
) N
e HA2R(r )], =) | SyR(r,t) (10)
j=1
where
Sij = Z Oridrje” F 22, (11)
k

Note that S;; is a complex symmetric matrix and it needs to be computed only once.
The time propagation is therefore reduced to the matrix - vector product, which can

be performed efficiently using the Mathematica 7.0 programm.

IV. RESULTS AND DISCUSSION

In this section we present results from nonrelativistic electronic structure calcula-
tions of the ground states of noble gas atoms. The main results for He, Ne and Ar
atoms are suumarized in the Table I. Results from the calculations for the He atom
are well agreed with the results from Roy [5] and HF [6]. However, in the case of Ne
and Ar atoms differences in the total energies are obtained in our calculation, which
is the result of the contribution of potential energy calculation.

Figure 1 represents the result of the calculation of the radial charge density distribu-
tion of Ne and Ar atoms. We note that the radial charge density calculated maintain

the expected shell structure and closely resemble the HF density (not shown in the

plot).
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TABLE I: Calculated ground state properties of He, Ne and Ar(in au) along with

literature data for comparison.

He Ne Ar
-E Present work 2.9000 128.9990 527.1320
Roy/[5] 2.8973 128.9065 527.5486
HF[6] 2.8617 128.5470 526.8174
—Z/r Present work 6.7878 311.115 1247.2100
Roy/[5] 6.7850 311.0597 1245.5699
HF[6] 6.7492 311.1333 1255.0504
/712 Present work 2.0678 65.7672 221.4480
Roy/[5] 2.0651 65.7129 220.6552
HF[6] 2.0516 66.1476 231.6093
-k, Present work 1.0273 12.1128 29.5296
exact 1.026 12.11 30.19
—FE. Present work 0.0422 0.3561 0.7023
Roy/[5] 0.0423 0.3561 0.7011
Ty Present work - 94.2962 322.3100
Roy/[5] - 94.2068 322.0345
HF[6] - 90.6140 308.4206
Teorr Present work - 34.7033 205.5490
Roy/[5] - 34.7006 205.5177
HF[6] - 37.3886 214.4033

V. CONCLUSIONS

The current research is focused on the results of the calculation of the electronic

structure of the noble atoms. We describe the discrete variable representation method

for the noble gas atoms. Results for noble gas atoms including effective potential,

exchange and correlation contributions and ground state energy are presented and

compared with calculated results from other researchers. For the next step of the

research density functional theory with Kohn-Sham correction for ground state energy

of noble gas atoms is going to be calculated.
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FIG. 1: The radial charge density distributions of ground state for Neon (left side) and
Argon (right side) atoms
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This article aims to provide description on the development of atom-
ic force microscopy (AFM) nanolithography for structuring and fabrica-
tion of few layers of MoS, at the nanometer scale. The bias-assisted
AFM nanolithographic technique on mechanical exfoliated MoS, layers
is reviewed. The reported AFM lithographic technique can be used to
produce “artificial” edges, in few layers MoS, flakes and to exfoliate

MOSz.

I. INTRODUCTION

The transition-metal dichalcogenides have received great attention because of its
electronic, optical, and catalytic properties [1-3]. Among several TMDs, molybdenum
disulfide has been investigated mostly because of its wide applications of thin-film
transistors (TFTs), photodetectors, and energy storage. Thin film transistors based in
single and few layers of MoS, that obtains fascinating properties as high on/off current
ratio, high mobility at room temperature [4, 5].

The bulk MoS, crystal obtains 1.2 eV indirect band gap bulk phase, where 1.8 eV
direct band gap corresponds to its exfoliated monolayer. These characteristics well satis-
fy with the nanoelectronic industry demands for two dimensional semiconductive
materials. Many authors have reported interesting conductance properties and metallic
behavior of MoS, edges and how they can be used as active sites for catalysis [6]. For

these reasons, fabrication of “artificial” edges can be very useful for a new generation of

! smunkhsaikhan@must.edu.mn




G. Munkhsaikhan et. al., Few layers MoS, patterining by AFM nanolithography

2D materials based nanodevices. However, this technique is realizable only in Ultra-
High Vacuum (UHV) conditions with use of Scanning Tunneling Microscope (STM).
In this work, a new method to lithograph MoS, exfoliated flakes surfaces is investi-

gated that performed in air, with a setup similar to the LAO one.

II. METHODOLOGY AND EXPERIMENTAL DETAILS

A. Mechanical Exfoliated single and few layers of MoS,

At the first step, we start on mechanical exfoliation method to prepare samples. Me-
chanical exfoliation is the simple and best method known as "scotch-tape", based on the
isolation of mono and many MoS, layers from bulk ones [7]. MoS, crystal (SPI sup-
plies, CAS 1317-33-5) has been exfoliated by micromechanical technique, with a scotch
tape. The exfoliated MoS, flakes have been deposited on heavily doped silicon sub-
strates (resistivity 0.01 Q-cm). Next step, our research is focused on identification of
mechanically exfoliated few layer MoS, via optical microscopy. It is known that clear
optical contrast is obtained by selecting a proper substrate, silicon wafer covered with
Si0, layer on top of it. However, since we have used conductive Si substrate we have
faced problem of obtaining suitable optical contrast. Only many layers of MoS, were
merely were appeared in the white contrast, where identification of mono- or few layers
became almost impossible. A new approach so called “blindly seeking method” is used
in this investigation. Here, for an identification of less contrast area (possibly few lay-
ers) we recommend to perform a simultaneous AFM investigation near this region. By
obtaining few layers we mark position coordination of this area for future lithography

process.

B. AFM lithography of MoS,

The size of the deposited MoS, flakes have been analyzed by Atomic Force Micros-
copy (AFM Digital D5000, Veeco). The same Atomic Force Microscope has been used
to lithograph the flakes. The lithography process is similar to the one adopted for LAO.
A conductive AFM tip (cantilever resistivity 0.01-0.025 Q-cm, antimony n-doped sili-
con, tip radius about 10 nm) has been biased at negative voltages (ranging from -8 V to -

12 V), and kept at 10 nm from the surface. The silicon substrate has been grounded.
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III. RESULTS
A sketch of the lithography technique is reported in Figure 1, upper-right inset. The
lithographic process is performed in air (relative humidity about 50%, temperature about
20 °C), where a water meniscus is formed between tip and sample. The applied voltage
caused the migration of water H' ions to the conductive tip, while the OH" ions are
pushed onto the MoS, surface. The tip has scanned the region one wanted to lithograph,
through an automated system. After that, the lithographed sample has been rinsed in a

0.1 M HCI solution, in order to remove the lithographed regions of the MoS, surface

[8].

oL
0 0.2 04 06 08 1

X (pm)

FIG. 1: AFM image of a lithographed MoS, flake, the white line represents the
lithography path. Height and line profile of the lithographed region are reported in the
bottom-right inset. Upper-right inset: sketch of the setup used for nanolithography [8].

The lithographed and chemically etched flakes have been studied by Donarelli et all,
where X-ray Photoelectron Emission Microscopy (XPEEM) using the end-station of the
NanoESCA beamline of Elettra synchrotron radiation facility. The experimental set-up
includes a non-magnetic, electrostatic PEEM and a double-pass hemispherical analyzer.
To analyze the flakes, spatially resolved XPS is mandatory, being the lateral dimensions
of the flakes of the order of 1 um, and the features related to the lithography process of

the order of hundreds of nm. In the present experiment the NanoESCA microscope was
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operated with a spatial resolution of ~100 nm calculated from the used contrast aperture
size in the PEEM column. In addition to imaging spectroscopy the NanoESCA end-
station also provides an operational mode to obtain fast XPS spectra from a sample [8].

An AFM image of a lithographed flake is reported in Figure 2. The brighter region
of the image is the one affected by the lithography process. To lithograph the flake, the
AFM tip has been biased at -8 V (the sample has been grounded) and it has scanned the
flake along the white line (superimposed at the AFM image) at 0.1 um/s speed. The
height of the lithographed region, taken along the white line, is reported in the middle of
Figure 2. The height is quite uniform along the path, and it reaches the value of about 17
nm. The height of the flake (recorded in the not-lithographed area) is 12.2 nm, i.e. 17
MoS, layers. After that, the lithographed sample has been rinsed in a 0.05 M HCI solu-
tion, in order to remove the lithographed regions of the MoS, surface for 10 seconds.
The chemical etching has removed the lithographed region, creating 6.8nm depth hole in
the flake. Therefore, the AFM lithography is capable to fabricate artificial edges in
MoS, exfoliated flakes.

29.5 nm 32.7 nm
| pm 25.0
25.0
20.0

! Vs : (0.0
5.0 Y -
15. - 17 nm = = 15.0

0.0
M 10.0

=
—|_12.2 nm

0.0 1.6

FIG. 2: AFM image of a lithographed MoS, flake, the white line represents the
lithography path. Height and line profile of the lithographed region are reported.

As can be seen in Figure 2, after AFM biased tip and chemical etching of MoS,, the
upper region of the lithographed flake is not completely removed: just the uppermost
layers have been etched (the lithographed area, recognizable in panel (b), does not cor-
respond to the hole). So, the described nanolithography process can also be used to fur-
ther exfoliate the flakes.

An AFM image of the thinnest lithographed flake with 9.8nm height is shown in
Figure 3. The bright dashed line region of the image is the one affected by the lithogra-
phy process. To lithograph the flake, the AFM tip has been biased at -7 V and it has

scanned the flake along the white line at 0.1 um/s speed. Here, a scratched hole along
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the white line is occurred, in the middle of Figure 3. The lithographed sample has been
rinsed in a 0.05 M HCI solution, where 2.5nm depth hole is created in the flake. The
height of the flake after lithography has reduced to 8.5 nm, which likely shows that
MoS, layers can be exfoliated by the lithography technique.

90 nm 20 nm

FIG.3: Panel (a): AFM image of the thinnest MoS, flake before nanolithography. Panel
(b): AFM image of the MoS, flake after nanolithography process (Vtip= -7 V, vtip= 0.1
um/s). Panel (c): AFM image of the MoS, flake after selective chemical etching (HCI1
solution, 0.05 M).

IV. SUMMARY

In this work, a new technique to lithograph the MoS, flakes at the nanometer scale is
reported. The importance of this technique is demonstrated by AFM measurements. The
experimental setup is similar to the well-established LAO. However the lithography
technique is not based on the oxidation of the surface. On the other hand, the same
measurements indicate a sulfur desorption likely induced by an OH™ ions
“bombardment” of the molybdenite surface. The here reported lithographic technique
can be used to fabricate “artificial” edges on MoS, flakes. Furthermore, AFM

lithographic technique can be used also to exfoliate MoS,.
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The substitutional effect of rare earth element neodymium (Nd) on
the crystal structure microstructure and phase transformation behavior of
NisTis5oxNd, (x= 0, 0.1, 0.3, 0.5, 0.7 at.%) shape memory alloy was
investigated by scanning electronic microscope, X-ray diffraction and
differential scanning calorimetry. The microstructure analyses reveal that
Ni-Ti-Nd ternary alloy contains three phases: NiNd, NiTi, and NiTi
matrix. A one-step martensitic transformation is observed in the alloys.
The martensitic transformation temperature Ms increases sharply with

increasing content of Nd.

I. INTRODUCTION

Nearly equiatomic Ni-Ti shape memory alloys (SMAs) have remarkable shape
memory effects and excellent mechanical properties and have been used in various
fields, particularly in engineering and medical application in aerospace, electron
actuators, smart material, coupling and including pipeline joints[1]. Current research
interest on SMAs mainly lies in controlling the martensitic transformation temperature
and improving the shape memory effect for their applications. The effects of martensitic
transformation, super-elasticity, and shape memory effect have been widely studied by
adding transitional elements to Ni-Ti binary alloys as elements like Fe [2], Hf [3], Pd
[4] and etc. It is found that most alloying elements for example Fe lower martensitic
transformation temperature; and only a few elements, such as Hf, Pd increase

martensitic transformation temperature [5].
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Moreover, the microstructure and martensitic transformation temperature of the
rare earths RE= Ce [6], Gd [7], Dy [8], La [9] addition to Ni-Ti binary alloys have
also been studied using scanning electron microscopy (SEM), energy dispersive
spectrometry (EDS), X-ray diffraction (XRD), and differential scanning calorimetry
(DSC). It was found, that the addition of these REs to Ni-Ti binary alloys increases
the martensitic transformation temperature and changes the phase transformation
sequence.

Rare earth element Nd is also a widely used element, particularly in magnetic
materials. However, only few studies have been conducted on Nd substituition to shape
memory alloy. So far in the literature is known which reports Nd substitution range
between 1 at.% to 20 at.% to Ni-Ti alloy[10]. However the effect of Nd addition to Ni-
Ti binary alloy on microstructure and martensite transformation temperature remained
unclear.

Here, in this paper, Nd content was varied; 0.1%, 0.3%, 0.5%, 0.7% atomic
fraction of Nd was added to Ni-Ti binary alloys, and the microstructure and martensitic
transformation were studied experimentally.

II. EXPERIMENTS

The NisoTiso,Ndy alloys were prepared by melting each 10 g of mixture of starting
materials with different nominal compositions (99.9 mass % sponge Ti, 99.7 mass %
electrolytic Ni and 99.95 mass % Nd) in a non-consumable arc-melting furnace using a
water-cooled copper crucible. The alloys are denoted by NdO, Nd0.1, Nd0.3 Nd0.5 and
Nd0.7 to refer to NisgTisg, NisoTisgoNdgy;, NisoTisg7Ndgs, NisgTisgsNdys  and
NisTis93Ndg 7 alloys, respectively. Arc-melting was repeated four times to ensure the
uniformity of composition. The specimens are spark-cut from the ingots and heat treated
at 850 °C for an hour in a quartz tube furnace. Subsequently the specimens were
quenched using water. Thereafter, the specimens are mechanically and lightly polished
to obtain a plain surface.

The phase transformation temperatures of NisoTiso,Nd, alloys were determined by
DSC using a TA Q2000 calorimeter. The temperature range of heating and cooling was
from -30 °C to 150 °C, and the scanning rate of heating and cooling was 10 °C/min.
SEM observations were conducted using a FEI Quanta 650 FEG equipped with EDS
analysis system by Oxford Instruments. An XRD experiment was conducted using a

D/MAX-2500PC X-ray diffractometer.
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III.  RESULTS AND DISCUSSION

Microstructure of NisyTisy .Nd, alloy

Fig. 1a depicts the XRD curves of NisoTiso<Nd, (x=0, 0.1, 0.3, 0.5, 0.7) alloys at
room temperature. The diffraction peaks are identified to be from NiTi B19' martensite
phase, NiTi B2 austenite phase, NiTi, phase and NiNd alloy after comparing with
JCPDF cards (. 65-0145, 65-4572, 72-0442, and 19-0818). The detailed crystal plane
indices are marked in Fig.1c for Nd0.1 and Fig.1d for Nd0.7, but the relative intensities
of each XRD pattern are quite different because of the differences in martensite phase
fraction and austenite phase fraction. In this paper, the letter M denotes the NiTi B19'
martensite phase and the letter A denotes the NiTi B2 austenite phase. This result is
confirmed in the following DSC analysis. Fig. 1b depicts a comparison of martensitic
diffraction peaks of NisyTisoNdy (x=0, 0.1, 0.3, 0.5, 0.7) alloys. It is seen that the
martensitic peak the diffraction angle decreases with increasing Nd fraction. It indicates

that the lattice of the martensite expands with Nd addition.
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FIG. 1: XRD curves of NisTiso<Nd, alloys:
(a) XRD curves of NisyTiso,Ndy alloys; (b) comparison of martensitic diffraction peaks
of NisoTis0.Ndy alloys; (c¢) Indexed diffraction peaks in Nd0.1; (d) Indexed diffraction
peaks in Nd0.7;
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The lattice parameters of alloys can be also calculated by peak position in XRD
patterns and shown in Table 1. It is shown clearly that the cell volume V' expand for
either martensite or austenite with Nd addition to Ni-Ti binary alloy from 0 at. % to 0.7
at. %. The observation can also be confirmed in the following composition analysis.

Table 1 Lattice parameters of Ni-Ti-Nd alloys

Alloy Phase a(nm) b(nm) c(nm) L) V(nm?®) Source
NdO M 0.2898 0.4121 0.4619 97.86 0.05464
M 0.28824 0.41324 0.46307 97.36 0.05470
NdO.1
A 0.30148
NdO0.3 M 0.28925 0.41211 0.46425 97.62 0.05484
NdO0.5 M 0.28933 0.41350 0.46472 97.67 0.05510
NdO0.7 M 0.28999 0.41418 0.46635 97.85 0.05548
JCPDF card
M 0.2898 0.4108 0.4646 97.78 0.05480
No.65-0145
NiTi
JCPDF card
A 0.3007 0.02719
No.65-4572
JCPDF card
NiTi, 1.131 1.4503
No.72-0442
JCPDF card
NiNd 0.3803 1.046 0.4339 0.17262
No.19-0818

Morphologies and compositions of NiseTisy..Nd, alloys

Fig. 2 depicts the back-scattering SEM images of NisoTi5xNdy (x=0, 0.1, 0.3, 0.5,
0.7) alloys. For NdO alloy, there is only one phase that can be identified in the SEM
image (Fig.2a). For Nd0.1 and NdO0.3, two different phases, namely, matrix and a bright
phase, can be identified in the SEM images (Fig.2b-c). Some bright particles that are
nearly round-shape and up to 3 um and 7 um in diameter, respectively, are distributed
randomly in the matrix. In addition, the bright phase is found on grain boundaries of the
matrix. For Nd0.5 and NdO0.7, three different phases, namely, a bright phase, a dark
phase and the matrix, can be identified in the SEM images (Fig.2d-e). Bright particles
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that are nearly round-shape and up to 18 um and 25 pum in diameter, respectively, are
distributed randomly in the matrix, together with some larger, curved particles . The
dark phase is in irregular shape and distributed randomly in the matrix. The size of the
bright particles and the volume fraction of the bright phase increases with increasing Nd

fraction.

FIG. 2: Back-scattering SEM images of NisoTis,.Ndy alloys:
(@) NisoTisp; (b) NisgTis09Ndy 15 (€) NisgTigg7Ndg3; (d) NisgTige sNdgs; (€) NisgTise3Ndy 7

To identify the phases, EDS analysis was conducted in SEM. The compositions of Ni-
Ti-Nd alloys are shown in Table 2. The Ti:Ni ratio in the matrix of all Ni-Ti-Nd alloys
is measured to be close to 1. The Ti:Ni ratio in the dark phase of Nd0.5 and Nd0.7 alloy
is measured to be nearly 2:1. By XRD analysis, there is a NiTi, phase in Nd0.5 and
NdO0.7. Thus, the dark phase can be concluded to be NiTi, phase. According to the 773
K isothermal section of the ternary alloy phase diagram of the Ni-Ti-Nd, no
intermetallic compounds can be found in the Ti-Nd binary system. However, the Ni-Nd
binary alloy phase diagram shows seven intermetallic compounds defined as NdNis,
Nd,Ni;, NdNi3;, NdNi,, NdNi, Nd;Ni;3, and Nd;Ni [12]. The EDS results show that the
Ni:Nd ratio in the bright phase is nearly 1 and can be regarded as the NiNd intermetallic

compound with a small amount of Ti solute.
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Tabel 2 Compositions of Ni-Ti-Nd alloys

Alloy Phase Ti (at. %) Ni (at. %) Nd (at. %)
NdO matrix 49.1 50.9 0

matrix 50.5 49.5 0
NdO.1

bright phase 3.6 49.2 47.2

matrix 50.7 49.3 0
Ndo0.3

bright phase 3.7 48.9 47.4

matrix 50.7 49.3 0
NdO0.5

bright phase 3.2 49.0 47.8

dark phase 66.7 333 0

matrix 51.0 49.0 0
Ndo0.7

bright phase 4.0 49.0 47.0

dark phase 66.4 32.9 0.7

Furthermore, Nd has also been found in the dark phase of Nd0.7. The Nd atomic
radius (0.206nm) is larger than Ti atomic radius (0.176nm) by 17% and Ni atomic
radius (0.149nm) by 38% [13]. The Nd atom occupies the position of Ni or Ti,
consequentially resulting in an expansion of the Ni-Ti-based matrix lattice [7], which is

consistent with the XRD analysis.
Phase transformation of NisyTis, Nd, alloys

Fig. 3a depicts the DSC curves of the NisoTiso<Nd, (x=0, 0.1, 0.3, 0.5, 0.7) alloys.
Each DSC curve of NdO, Nd0.1, Nd0.3, Nd0.5, and Nd0.7 shows only one peak during
the heating and cooling process, which indicates a one-step B2<B19' phase
transformation. Fig. 3b shows the effect of Nd concentration on martensitic
transformation start temperature M;. For NdO alloy, the M| is measured to be 77.44 °C.
It is well known that quenched Ti-Ni alloys show one-step B2<>B19' transformation
and the transformation temperatures are strongly dependent on Ni concentration [5, 7].
0.1 at. % increase in Ni concentration can lower the M, of Ti—Ni alloy by more than10
°C. For example, Liu et al measured the M to be about -50 °C for Nis;Ti9 3 alloy after
annealing at 900 °C for 60min [7]. Tabish et al measured the M; to be -22.12 °C for
NisoTis alloy after annealing at 1000 °C for 120min [14]. Wasilewski et al measured
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the M, to be 65 °C for NiyggTiso, alloy [15]. In this work, the composition of the matrix
in NdO is Nigg36Ti5064, Which is Ti-rich. So, the M, of Ti—Ni binary alloy NdO is
reasonable. Meanwhile, the martensite transformations finish temperature M, in NdO
alloy is higher than room temperature of 20 °C. Thus, the martensite transformations
have finished at room temperature and the NdO alloy should be composed of pure
martensite phase, which is in agreement with the XRD results.

Fig. 3 showns the M, increases with increasing Nd fraction from 0.1 at. % to 0.7
at. %. And, all M, in four DSC curves of Nd addition alloys, are lower than room
temperature. Thus, martensite transformation cannot finish fully at room temperature,
which indicates that both the austenite phase and the martensite phase exist in the Ni-Ti-

Nd alloy.
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FIG. 3: DSC curve and martensite transformation temperature of NisoTi59.<Nd, alloys:

(a) DSC curves; (b) M, curve

IV. CONCLUSION

In summary, the effect of rare earth element Nd addition on the microstructure and
martensitic transformation behavior was investigated by XRD, SEM and DSC. The

microstructure of the NisoTiso.Nd, alloys consists of Ni-Nd alloy with a small amount



M. Dovchinvanchig et. al., Nanocrystal microstructure and phase transformation ...

of Ti solute and Ni-Ti matrix. The lattice of Ni-Ti-based matrix is expanded by Nd
addition. The Ni-Ti-Nd alloy shows a one-step martensitic transformation. Increasing

the Nd fraction, the martensitic transformation start temperature M; increases.
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