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Multiparticle production process in #~C interactions at 40 GeV/c are studied by
using a relativistic invariant parameter cumulative number n.. Local values of
temperature, pressure, volume and energy density in the interaction region are
determined as a function of the cumulative number. This analysis gives us the
possibility to study a space-time picture in the vicinity of the interaction point

and the phase transition process at high energies.

I. INTRODUCTION

The investigation of the multiparticle production process in hadron-nucleus (hA) and
nucleus-nucleus (AA) interactions at high energies and large momentum transfers
plays very important role for understanding the strong interaction mechanism and
inner quark gluon structure of nuclear matter.

According to the fundamental theory of the strong interaction, QCD [1], interac-
tions between quarks and gluons become weaker as exchanged momentum increases.
Consequently at large temperatures or densities, the interactions which confine quarks
and gluons inside hadrons should become sufficiently weak to release them [2].

It is expected that QCD phase transition processes may be realized in (hA) and
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(AA) interactions at high energies and large momentum transfers, in other words,
these interactions give us possibility to study the nuclear matter under extreme
conditions. During the last years the collective phenomena such as the cumula-
tive particle production [3], the production of nuclear matter with high densities,
the phase transition from the hadronic matter to the quark-gluon plasma state and
color-superconductivity is widely discussed in the literatures [3-7].

In hA and AA interactions, in contrast to hN interactions, the secondary particles
may be produced as a result of multi-nucleon interactions, in other words, the particles
are produced in the region kinematically forbidden for hN interactions.

According to the different ideas and models, if these phenomena exist in the nature,
then they will be observed in the above mentioned reactions and should influence the
dynamics of interaction process, and would be reflected in the angular and momentum
characteristics of the reaction products.

In this paper we are considered the next reactions:

T+ Cop+ X (1)

7 +C =1 +X (2)

at 40 GeV/c.
This paper is the continuation of our previous publications [4,8].
8791 7~ C' interactions are used in this analysis. 12441 protons and 30145 7~

-mesons are detected in these interactions.

II. EXPERIMENTAL METHOD

The experimental material was obtained with the help of Dubna 2-meter propane
(C3Hg) bubble chamber exposed to 7~ -mesons with momentum 40 GeV/c from
Serpukhov accelerator. All distributions in this paper are obtained in the condition
of 47 geometry.

The average error of the momentum measurements is ~ 12%, and the average error
of the angular measurements is ~ 0.6%.

All secondary negative particles are taken as 7~ -mesons. The average boundary



momentum from which 7~ -mesons were well identified in the propane bubble chamber
is ~ 70 MeV/c. In connection with the identification problem between energetic
protons and 7" -mesons, protons with momentum more than ~ 1 GeV/c are included
into 7t -mesons. The average boundary momentum from which protons are detected
in this experiment is 150 MeV/c. So, the secondary protons with momentum from

~ 150 MeV/c to ~ 1 GeV/c are used for proton distributions.

III. TEMPERATURE T AS A FUNCTION OF THE VARIABLE n,.

In our previous paper [4] we are studied the dependences of the temperature T on
the variable n. (or t) called the cumulative number. This variable n. in the fixed

target experiment is determined by the next formula:
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Here P,, P, and P; are the four-dimensional momenta of the incident particle, target
and the considered secondary particles, correspondingly E; is the energy and Pi|| is
the longitudinal momentum of the secondary particles, 8, = E—Z is the velocity of the
incident particle, at high energy experiment g8, ~ 1, so, may be omitted, m,, is proton
mass. From formula (3) we see that this variable is relativistic invariant.

From the other hand side, the variable n. at high energies is connected with the

momentum transfer t by the next formula:

_ |

mp

Where S,n = 2E,m,, is the total energy square for hN interaction, which is constant
in every experiment, so n. may be used as the main variable.

For secondary particles produced in the region kinematically forbidden for hN in-
teractions, this variable n. takes the value more than 1, i.e.n. > 1. This fact gives us
the possibility to know which particles in the given event are produced in the region
not allowed for hN interaction. This is another reason why we use this variable.

The transverse energy spectrum of the secondary particles produced in hA and
AA interactions at high energies may reflect the dynamics of the interaction process

more clearly. This is connected with the fact that the transverse effects are mainly
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generated during the interaction process.
The effective temperature T of the secondary protons from reaction (1) as a function

of the variable n. is presented on FIG.1. This figure was taken from paper [4].
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FIG. 1: Dependence of the effective temperature T on the variable n. for the secondary
protons.
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FIG. 2: Dependence of the effective temperature T on the variable n. for the secondary 7~
-mesons.

From FIG.1 we see that the effective temperature T remained practically constant
on the level T ~ 50MeV until n. ~ 1.2 and then increases. We note that we have
no experimental points in n. < 0.4 region. This connected with our difficulties of
identification of protons with momentum P, > 1GeV/c from energetic 7' -mesons.

The similar dependence for 7~ -mesons from reaction (2) is presented on FIG.2.
From this figure we see that with increasing n. the effective temperature T in the

beginning is increasing until n. ~ 0.07, and then in the (0.07 < n. < 0.5) interval



the temperature T remains practically constant on the level T ~ 0.234GeV and then
essentially increases.

The strong changing of characters of the dependences of temperature T on the
variable n. may be an indication of the different mechanism of particle production in
these regions. If so the first region with increasing T until T~ 200MeV and n. < 0.07
may correspond to the thermalization of the interacting objects (here the strongly
interacting matter is in the thermally excited hadronic phase), the second region with
approximately constant T, ~ 234MeV in the 0.07 < n.0.5 region for 7~ -mesons
and with constant 7. ~ 50MeV in the 0.5 < n. < 1.2 region for protons may be an
indication of the equilibrium state formation (hadron + quarks, gluons) and the third
region which shows the essential increasing of the temperature T in n. > 0.5 for 7~
-mesons and n. > 1.2 for protons can be connected with the production of pure QGP
state.

Our results show that the numerical characteristics for example, locations of the
transition lines, temperatures in the QGP states of the phase transition processes for

protons and pions are different.

IV. VOLUME AND ENERGY DENSITY ON THE VARIABLE n.

The dependence of the energy density on the variable n. may be determined by the

next formula,

clng) = Yo e ©
V(ne)
Where /Sy, - ne is the energy for producing of the secondary particles at given n.
and V(n.) is the corresponding volume.
We would like to note that at summarizing the formula (3) by all secondary particles
produced in the event, then we obtain the value of the total energy square determined
on the basis of the energy-momentum conservation law, i. e.

" (Ei — B.P]
QQZShN‘Mt:ShN‘Z( ful)

=1

Q% — S (6)

mp

We see that this formula is additive. If we detect all secondary particles produced

in the event, then the total transferred momentum Q? determined by all secondary



6 1s. Baatar et. al., Thermodynamical characteristics of the secondary particles. . .

particles tends to the total energy square S. This allows us to use the formula (4) to
estimate the energy density.

Now we will consider the case of the dependence of the volume on n.. To do
this we are used our previous result on the particle emission region size, r [8]. This

characteristic length r at high energies is determined by the formula,

1, 0.21[fm)]
r AP ——\/n_c

S ()

We see that the parameter r is inverse proportional to the variable n.. Here
AP=(.21fm is the Compton wave length of proton. We also see that the secondary
particles produced at nc=1, the parameter r is equal to AE(r = AL = 0.21fm), and if
ne < 1 then r > AP and if n. > 1 (for cumulative particles) then r < AP. In this case
the time scale can be determined as At = r(f—cm)

Now we have the possibility to determine the local V(n.) from which the particle
is emitted. In the first approximation V(n.) is regarded as a spherical bubble with
the parameter r calculated by the formula (7),

Vin = T = AT OB g )

The dependence of the volume V on the variable n. is shown on FIG.3. Experi-
mental points for protons (black circles) and 7~ -mesons (open triangles) from 7= C
interactions at 40 GeV/c calculated by formula (8) are also shown on this figure. We
see that with increasing of the variable n. the volume V is decreasing.

After the determination of the local volume V(n.), we can calculate the local energy

density €(n.) inserting formula (8) to formula (5) by the next formula,

e(n ) . \/ShNTLz GeV
< Am(0.21)3 fm?

(9)

This dependence was shown on FIG.4. Experimental values for protons (black
circles) and 7~ -mesons (open triangles) calculated by formula (9) are also shown on
this figure. This dependence shows that with increasing n. the energy density € is

essentially increased.
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FIG. 3: Dependence of the volume V on the variable n..

From formula (9) we see that the local energy density e(n.) is determined by v/Spy
and n?, in other words, by experimentally measurable quantities without model-
depending assumptions. This is of course the main advantage of this formula.

So we have obtained the local energy density e(n.) and volume V{(n.).

Now we will consider the case of the pressure P(n.). To do this we are used the
Clapeyron equation for the ideal gas. This equation gives the connection between the

pressure P, volume V and temperature T and can be written in the next form,
P(n.)-V(n.) =kpT(n.) (10)

Using the formula we can determine the pressure P(n.).

_ kgT'(n.)  kpT(n.) % GeV
Plne) = Ving (0218 fm? ()

The pressure P(n.) as a function of the variable n. is shown on FIG.5. We see that
with increasing n. the pressure P(n.) increases and at large values of the variable the

pressure increases more rapidly.
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FIG. 4: The energy density e as a function of the variable n..
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FIG. 5: (a, b) Dependences of the pressure P on the variable n. for protons and 7~ -mesons.

The dependence between the pressure P(n.) and the temperature T(n.) are pre-

sented on FIG.6(a,b). This dependence is called a curve of equilibrium of phases.

From FIG.6(b) we see that with increasing T(n.) the pressure P(n.) increases
until 77 = 0.200GeV and then the temperature T is remained practically constant
on the level T' = 0.234GeV, while the pressure P(n.) increases monotonously from

Pl(n.) > 127.1GeV/fm? to P?(n.) ~ 1113.4GeV/fm? and then with the further



T+C=p+X A+C =g +X
=ln_ F =
E | = £
3| 5|E E
o I a |
F In.‘.. %+
a 4 F
I ; .
71 104 +
5 ; g
&l =
| e~
I + § e
5; | !:.'
: -
4 ;
| 10} .-.‘
[ e : -
3 " S o
. 2 2
@ = i =
H
1 .
; * th _ 1”"f - . . H
002 004 008 D08 01 012 D14 016 10 3
T, Ga' ; T, Ge
EI} L Gey b} CeV

FIG. 6: (a, b) Dependences between the pressure P and the temperature T for protons and
T -mesons.

increasing of T, the pressure rises again. So we can conclude that in the pressure
interval P!(n.) < P < P2(n.) with practically constant T ~ 0.234GeV is established
the equilibrium state (or mixed phase).

The region with 7' < T, ~ 0.234GeV and p < Pl(n.) = 127.1GeV/fm? belongs to
the thermally excited hadronic phase and the region with 7' > T, ~ 0.234GeV and
P > P?(n.) = 1113.4GeV/ fm? belongs to QGP state.

In the case of the secondary protons the similar dependence between P and T is
observed (FIG.6). The thermal equilibrium state is established at 7. ~ 50MeV in
contrast to 7~ -meson case. So the region with T, = 50 and pressure interval P!(n,) ~
526.0?:;% < p < P?(n.) ~ 1685.7GeV/ fm? belongs to the thermal equilibrium state
and the region with T' > T. ~ 50MeV and P > P? ~ 1685GeV/fm? corresponds to
QGP state for protons.

We note that in connection with our identification problem of protons with momen-
tum P > 1GeV /c we have no experimental points in the region with T' < T, ~ 50MeV
and P < P! =526GeV/fm?>.

We note also that with increasing of the temperature T the pressure P(n.) increases
and the volume V(n.) decreases. So, at establishing of the equilibrium that two effects
are mutually compensated each other for the both cases of protons and 7~ -mesons
from interactions at 40 GeV/c.

We would like to stress at last that the dependence of the pressure P on the tem-
perature T is, of course, the consequence of the dependence of the temperature T on

the variable n., but it gives us the additional information on the critical pressures P!
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and P2,

V. CONCLUSION

In this paper we are determined the local energy density e(n.), temperature T(n.),
pressure P(T n.) and volume V(n.) of the interaction region. This gives us the
possibility to study the space-time picture of the multiparticle production process
at high energies including the phase transition from the hadronic state to the quark-

gluon plasma.
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Nonequilbrium Ising Bloch Transition in Forced Nonlocally
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We study phase and amplitude models for 2:1 resonant oscillators with nonlocal
coupling and show that Ising Bloch transition - a bifurcation from standing to
moving front - is dimmed by a regime with drifting frontal oscillators causing fluc-
tuations of propagation direction. In the phase model, steady front propagation
occurs only when the number of drifting oscillators is vanishing. In the amplitude
model, front propagation failure occurs in an interval of a non-variational parame-
ter, €1 < € < ea. At the lower limit of the parameter, ¢, amplitude modulations are
weak and Ising-Bloch bifurcation is similar to the front propagation in the phase
model. At the upper limit of the parameter, c2, where amplitude modulations are
significant, strong nonvariational effects leading to pattern formation impede the

oscillators drifting and enforce Ising-Bloch transition.

I. INTRODUCTION

Insights into complexity can be acquired by monitoring its reactions to external per-
turbations. In this respect, oscillatory systems are particularly interesting because of
resonance - nonlinear response at the forcing frequency rational multiple of the nat-
ural [1]. A very rich repertory of pattern formation, front turbulence, and nontrivial
dynamics of spiral waves has been reported for distributed resonant oscillators [2-7].
A particularly well studied distributed system is the 2:1 resonant system with the
forcing frequency twice of the natural [8-11].

Most of previously reported studies of 2:1 resonant systems were concentrated on lo-

cally coupled limit cycle oscillators. Direct local coupling, which is typical in chemical
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oscillations, implies diffusion of molecules displaying oscillatory kinetics. In biolog-
ical systems, in addition to the direct local coupling, an effective coupling between
molecular substances can be carried out by diffusive, coupling agents(ligands) - pas-
sive molecules not involved in the active kinetics, oscillatory or bistable dynamics
[12]. If the time scale of coupling agents is much smaller than the oscillation period,
the instant coupling range that the agents establish is greater than the range of local
coupling that covers only the nearest neighbors. Hence, in the presence of fast, diffu-
sive agents, active molecular substances located away from each other can instantly
interact through the nonlocal field of the agents.

Recently, Kuramoto and colleagues, and other research groups studied nonlocally
coupled oscillatory systems [13—-19]. It was shown that nonlocally coupled systems
display many interesting dynamics unknown in oscillatory systems with local coupling,
such as coexistence of synchronization and desynchronization[16, 20], spiral waves
without core [18], and power law scaling chemical turbulence [21, 22].

In externally forced systems with local coupling, the most fascinating phenomenon
is the Ising-Bloch transition - a bifurcation from standing to moving front [8, 9. When
coupling is local, the frontal structures of both Bloch and Ising fronts are spatially
continuous. In contrast, in nonlocally coupled systems, spatial coherence between
the neighboring oscillators can be lost [12]; therefore, front profiles can be spatially
discontinous. Thus, an interesting problem is propagation of a front subject to spatial
discontinuity.

The subject of this work is front bifurcation in the 2:1 resonance system with
nonlocal coupling. In the next section we will introduce the forced nonlocally coupled
Ginzburg-Landau equation (CGLE). We will analyze nonlocally coupled phase model,
which can be obtained from the forced CGLE in the weak coupling limit, in section
ITI. In section IV we show Ising-Bloch transition in the forced CGLE in dimensions

one and two. Discussion is in the last section.

II. THE MODEL

The Stuart-Landau equation is the normal form of a limit cycle oscillator near a
Hopf bifurcation [24]. When the oscillator is externally forced, a new term is included

in the Stuart-Landau equation. If the forcing frequency is twice of the original, the
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FIG. 1: A bifurcation diagram of Eq. (1) on the (v,r) plan for 8 = —1.2. Inside the solid
lines there is a region of bistability, which is divided by the dashed lines into the subregions
with three (IIT) and five (V) steady states. Outside the solid lines, Eq. (1) displays oscillatory
dynamics.

modified model has the following form in the reference frame of the forcing frequency,
A= (14 i)A— (1+iB)APA + A", W)

where, A is a complex function; v, 5, and v are real parameters; and A* is the
complex conjugate of A. The last term represents the external forcing. Solutions
of Eq. (1), oscillating at the frequency rational multiple of the forcing frequency
are called the mode-locked solutions. There are two stable mode-locked solutions in
Eq. (1), which differ from each other by the phase difference 7. The mode-locked
solutions, A = £ Rexp(it)), are given by the stationary solutions of Eq. (1),

cos(2) = (R = 1)/,

sin(2¢) = (w — BR?) /7,
o _ 14+ Bw+ (148 — (w—B)]"

R 5 . (2)

In addition to the stable solutions, depending on parameters v, 8, and ~, Eq. (1) dis-
plays also unstable steady states. On the parameter plane (v, v), the steady solutions
are found inside the solid line which marks transitions from mode-locked solutions to
quasiperiodic and complex oscillations, Fig. 1.

Let consider distributed in space forced oscillators. An interesting solution is when
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oscillators split into two mode locked states with the phase difference 7. If the oscil-
lators are coupled locally, there is a front connecting the phase locked states, which
depending on parameters displays very rich dynamics, including transition from stand-
ing to moving front, regular or chaotic front motions, and pattern formation instability
[9].

In biological systems, coupling between the oscillatory elements is often carried out
by diffusion of inactive molecules which are not involved directly in the active kinet-
ics. Proteins regulating cell’s life interact with each other through reaction networks
which can display various complex dynamics, including oscillations. Cell membranes
do not allow these macro-molecules freely diffuse between different cellular compart-
ments and cells. For example, cyclin-dependent protein kinases interact with other
proteins and genes through the reaction network called the cell cycle engine to regu-
late the cell cycle rhythm. The engine operates in the cell’s nuclei and its substances
cannot diffuse freely outside of the cell. However, cells can coordinate their cell cycle
progression pace by exchanging information through diffusive molecules with short
time scales; for instance, through growth factors that control indirectly the dynamics
of the protein-kinases by activating or deactivating key enzymes that subsequently
phosphorylate /dephosphorylate the cyclin dependent protein kinases. Mathemati-
cally, coupling by an inactive diffusive molecule with a short time scale leads to
nonlocal coupling [13]. In the presence of nonlocal coupling, the canonical form, Eq.

(1), includes a coupling term, Z,
A=0+i)A— (1 +iB)|APA+ pn(l +ie)Z + vA*. (3)
The complex nonlocal field Z is given by [23],

Z = /exp(—/ﬁ;|r —'|)(A(x") — A(r))dr’. (4)

When oscillators are coupled, the phase locked states should be connected by an
interface. Indeed, in locally coupled systems, diffusive coupling leads to a spatially
continuous front. Therefore, one expects that the coupling by Z leads to a front
connecting the phase locked states given by Eq. (2). However, previous studies of a
population of oscillators coupled by nonlocal coupling show that spatial discontinuity

is characteristic for nonlocal coupling. Hence, a front solution in Eqs. (3)-(4) can
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FIG. 2: Solutions of the phase model, Eqs. (5)-(6), in a system with periodic boundary
conditions. a) Uniform solution is shown by dotted lines. Red lines show two phase locked
states. Blue lines show distorted phase locked states for u = 0.5. Parameters are €2 = 0.835
and v = 0.875. b) Phase domains stabilized by nonlocal coupling. The size of a domain is
given by its radius K. dx is the interface width. Parameters are 2 = 0.875, v = 0.835, and
1 = 0.5. Other parameters are § = 0.394, x = 1—167 and o = 1.6.

be spatially discontinuous. A question arises as to whether Ising-Bloch bifurcation is

possible in forced oscillators with nonlocal coupling?

III. ANALYSIS OF THE PHASE MODEL

In the weak coupling limit, when the perturbations modulating the oscillation am-
plitude is small, Eqs.(3)-(4) can be reduced to a phase model [24], which can be very

helpful for theoretical analysis. The phase equation reads,

P =0 w20~ 0)] + 2, Q

Zg = M/GXP(—fﬁlr — 1) sin(¢(r) — ¢(r') + a)dr’. (6)

In Eqs.(5)-(6) Q = B(p — 1)+ v —eu; v = v4/1 4 B?; sin(20) = —\/%; and,
tan(a) = ﬁ::ﬂ

Let find simple solutions of Eqs. (5)-(6) and investigate their stability. If 4 = 0

and 7/ > Q, there are two phase locked states, ¢* and ¢” + 7, which are solutions to
Q —~"sin(2(¢ — ) = 0. (7)

Another simple solution for p  # 0 is the uniform solution, ¢V =

0.5 arcsin[%i,n(o‘))] + 6.
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FIG. 3: Bifurcation to drifting oscillators in Eqgs. (5)-(6). Dashed line is analytically found
curve below which an interface oscillator losses stability. Open circles mark areas where
the two domain solution(TDS) is unstable and uniform solution emerges. Open boxes mark
areas where TDS is unstable and clusters emerge. Connected by lines partially filled circles
mark areas where TDS is stable but drifting oscillators emerge. Filled circles show areas
with stable TDS and no oscillator drifting. Parameters are = 0.875, 7' = 0.835, § = 0.394,
[ =2.32, k = <. N = 256 and periodic boundary condition.
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Based on the analysis of the amplitude model(Fig. 1), at small p, the phase locked
solutions are expected to be stable. An emergent, nonuniform solution is coexistence
of two domains with local phases close to ¢¥ = %arcsin[%] + 6§ and ¢” + 7, Fig.
2a. Note that if p = 0 and +' < €, there are no stable uniform solutions to Eq.
(7), because oscillators are drifting. However, for these parameters values, solutions
forming stable domain structures similar to in Fig. 2a are possible in Eqgs.(5-6) if
~" 2 Q. Though, it is difficult to obtain analytic expressions for such solutions, these
solutions forming a stable domain structure can be found numerically, Fig. 2b. For
the domains stabilized by nonlocal coupling, oscillator drifting at the interface region
is typical, because coupling field can vanish there due to the symmetry of the domains.

Consider small ;1 and mark the phases at an interface and a center of a domain by
¢! and ¢©, respectively. Assuming a linear phase distribution from the center of the

domain to the interface, ¢ = ¢© + gz, we evaluate the coupling integrals at these

locations,

!/

WK

—m[q cos(a) + ksin(a) — exp(—rdx)(gcos(ay) + ksin(ay))],

I _
Zy=

!/

(8)

Z¢C = ﬁ[exp(—/ﬁ;R)(Zq cos() + 2k sin{ae)) + —qcos(a) + ksin(a)].(9)

_q2+/<;2
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In Eqs.(6)-(7) dz is the interface width, and R is the distance from the center of the
domain to the interface, and a; = a+ ¢éx and o, = ¢R — «. For éx << 1 and g — 0
we find that Zé ~ —prsin(a)dxr and Zg ~ —p[l — 2exp(—kR)|sin(«). If coupling
range is large, x is small, therefore, for sufficiently long-range coupling, Z ({5 is negligible
and ¢! is close to ¢”. Contrary, the phase at the center, ¢¢ ~ % arcsin[m%,inm)] +9
can be larger or smaller ¢”, depending on « and xR. In other words, the center of
the domain is concave or convex depending on the value of «.

At small p, we can treat nonlocally coupled oscillators as uncoupled rotors subject
to a time dependent forcing field with spatial distribution. In this way, the stability
of a domain can be studied by considering only two oscillators, the ones at the center
of the domain and at the interface. By perturbing the solutions ¢! and ¢¢ with small
perturbations d¢exp(At + gx), A can be calculated. For éx << 1 and ¢ — 0, we
find A\; = —279' cos[2(¢? — 6)] and Ac = —27 cos[2(¢“ — §)], respectively. Hence, the
instability conditions reads as, kusin(a)dr < Q — " and psin(a) < Q —4'. Thus,
for parameters in Fig. 2a and for o € [0,7/2], both ¢! and ¢ are stable to small
perturbations. Interestingly, for a € (m, 27| and for some ranges of the parameters
p and xR, the solution ¢! can be linearly stable when ¢ is linearly unstable. Note
that such an instability may lead to a cluster formation.

If 4" is sufficiently large and v > €, a front connecting mode-locked states are
motionless. Such a front is called an Ising front. In locally coupled systems, with
the decrease of 4/, there is a transition to a moving front called a Bloch front. Our
simulations indicate that in nonlocally coupled systems, the decrease of 4/ does not
always lead to a moving front because drifting oscillators emerge at the interface,
enforcing fluctuations of propagation direction. Here we consider the dependence
of oscillator’s drifting on two parameters, « and +/. To locate transitions from a
phase-locked state to a drifting state on the parameter plane (a,7'), we numerically
compute the phase distribution and the nonlocal field, Z4(z), for oscillators forming
phase-locked domains as shown in Fig. 2a. Then, we consider an interface oscillator
at the Ising front as an uncoupled oscillator subject to the nonlocal field Z é (). Next,
we assume that the phase distribution of other oscillators are stationary and use the
parameters « and 7’ as bifurcation parameters. Then we numerically locate saddle-
node bifurcations which we regard as approximate transition points from phase-locked
states to drifting states, dashed-line Fig. 3. We also mark in Fig. 3 results of direct

numerical simulation of Eqs. (5)-(6), from an initial condition with two unform phase
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locked states with the phase difference 7. Filled circles in Fig. 3 show cases when an
interface has no drifting oscillators( similar to the phase distribution shown in Fig.
2a), whereas partially filled circles show the case when there are drifting oscillators as
shown in Fig. 2b. Thus, according to Fig. 3, when parameter ~’ is fixed, the system
can display different front profiles depending on parameter «.

Simulations show that when there are no drifting oscillators, front propagation in
Eq. (5) resembles front dynamics in locally coupled systems, with distinct Ising-Bloch
transitions. However, when drifting oscillators emerge with the change of parameter
«, failure of front propagation occurs. In the parameter region depicted by the solid
line in Fig. 3 front direction fluctuates; as a result, no steady propagation of a front
has been observed in simulations. Note that Eq. (5) is valid when coupling is weak
and the nonvariational coefficients, €, v, and [, are small in the amplitude model. In
the next section we examine the amplitude model when the nonvariational coefficents

are not small.

IV. DOMAIN PROPAGATION IN THE AMPLITUDE MODEL

Parameter « in Eq. (6) depends on ¢, therefore, we can use analysis of Eqs. (3)-(4)
by controlling € in the amplitude model while fixing other parameters. As an initial
condition, we again consider two equal-sized domains with the phase difference .
When € < —2, the front propagation resembles dynamics in the phase model, which
do not involve notable amplitude modulations. If —2 < ¢ < 3 a front is immobile
or cannot propagate steadily because of drifting oscillators at the interface, which
change the propagation direction randomly. A front region displays time by time
from two to eight large phase jumps (|%| > 2.5), for which the drifting oscillators
are responsible. As we increase € above the value 3, fluctuation of front propagation
direction decreases, and the number of large phase jumps in the frontal region is
reduced. The frontal pattern of a Bloch front shows some spatial regularity resembling
a periodic pattern, Fig. 4. By computing spatial correlation functions, we confirmed
that periodic structures in the frontal region are robust.

Note that the unstable, uniform solution of Eqs. (3-4), A = 0, has linear spectra
A=1—-0% mQ, where ¢ is the wavenumber and o = #ﬁ%. The spectra
are positive everywhere, with A = 1 at ¢ = 0 and A =~ const at large ¢q. Therefore,

if we assume that the frontal region is given by A = 0 solution, it can be subject to
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FIG. 4: Frontal pattern of a Bloch front in a one dimensional(1d) system with noflux bound-
ary condition. Arrows mark propagation direction. Parameters are: ¢ = 3.5, § = —1.2,
v—=—0.825 =04, k =, N =1024, and v = 0.4.

16"
wavenumber instability. Previous studies of the 2:1 resonance system with diffusive
coupling show that wavenumber selection is particularly clear when the parameter € is
large [10, 11]. Also, it is known that the velocity of a front increases with the increase
of nonvariational parameters, including €. Therefore, our explanation for Ising-Bloch
bifurcation in the amplitude model is that for an appropriate choice of the parameters
€ and v, wavenumber selection and front propagation processes mutually stabilize each
other: front propagation selects a particular wavenumber, whereas pattern formation
prevents oscillator drifting.

The fact that oscillators drifting at the frontal region causes front propagation fail-
ure can be confirmed by enforcing Ising-Bloch transition by synchronizing oscillators
drifting at frontal regions. Let us assume that Z field couples the forced oscillators
with a time delay 7, and it appears in Eq. (3) as Z(t — 7). Simulations show that
when € = 2.5, v = 0.35 and other parameters are the same as in Fig. 4, there is no
steady front propagation if 7 = 0. However, if 7 &~ 2.75, oscillators drifting ceases,
and a front propagation similar to the case with small amplitude modulations occurs.

We confirmed that in dimension two, when transition to a Bloch front occurs from
a regime with drifting oscillators, the system displays periodic frontal structures. As
for the Ising-Bloch transition with weak amplitude effects, interesting pattern is a
rotating wave with a complex core, Fig. 5. Despite the presence of a few drifting
oscillators at the core region, rotation is steady. Similar to the theory presented in
Ref. [18, 20], the complexity of the core is due to the vanishing of the coupling field,

Z, near the core.
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FIG. 5: Rotating waves with complex core in a system(128,128) with no flux boundary.
Parameters are the same as in Fig. 4. Two different time moments are shown as gray scale
plots of Im(A).

V. DISCUSSION

Recent studies show that external periodic forcing can enforce mode locking of
the eukaryotic cell cycle [25, 26]. In a population of yeast cells, growth factors(e.g.
TGF-«) with time scales much shorter than the cell cycle period mediate between the
cells. Such a system can be studied by the mathematical formalism presented in this
paper. Our results suggest that if as a result of forcing, cell population is in the mode
locked domains with different phases(corresponding to different physiological states),
nonlocal coupling by the growth factors may obscure or induce a wave propagation
depending on the value of a control parameter. Front propagation failure is known in
a model of a tissue where cell’s are under long range coupling [27]. According to our
model, front propagation failure can be prevented by nonequilbrium effects and time
delayed feedbacks.

Our result that the nonlocal field can lead to emergent stable domains when the
uncoupled system has no stable steady states seems very interesting. One may spec-
ulate that pathological cells may use such a mechanism to emerge in the tissue. We
will study this subject in detail in a separate work [28].

It is also known that front propagation in the 2:1 resonant system is similar to the
front dynamics in models of bistable systems. Therefore, our results presented in this
paper can be relevant to bistable systems with long range coupling. We hope that

periodic frontal structures and spiral waves with complex cores can be observed in
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experimental systems.
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The efficiency of a nano-rectenna strongly depends on the interaction between
shape and materials of the antenna element. In this paper, upper bounds for this
rectenna efficiency are determined for bowtie shaped dipoles fabricated of Au, Ag,
and Al. The result is that an optimal total harvesting efficiency of about 57% is
obtained, which is 11% higher compared to traditional nano dipole topology.

I. INTRODUCTION

The fundamental question whether optical waves can be efficiently converted into
electricity using nanometer scale antennas and rectifiers is a highly important research
field. The idea was originally proposed by Robert L. Bailey in 1972 [1]. However, it
was not until 2005 that real research had started due to the lack of technical ability
to manufacture structures at the nanometer scale [2]. Nowadays, by some researchers
it is claimed that so-called nano-rectennas could harvest more energy from a wider
spectrum of sunlight, in this way offering the possibility to replace traditional silicon
solar cells[3, 4]. Once realized, this concept would revolutionize the energy market.
It would partially solve the energy problem of human kind, and this would be done
in a completely clean and renewable way:.

In recent years, the concept of using nano-rectennas in solar energy harvesting has
been intensively investigated. A thorough numerical investigation was published in
[5, 6]. It was shown there that at a single frequency in the solar spectrum, up to 90%
of the energy can be made available at the output of a silver nano dipole. However,
the radiation from the sun is spread out over a wide frequency range, mainly in the
visible and near-infrared bands. Therefore, the concept of total harvesting efficiency

was defined in[5], taking this issue into account, yielding levels of about 60 70 %. In
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FIG. 1: Schematic representation of a nano rectenna system for solar harvesting. The light
is absorbed via a suitable antenna and the generated AC power is fed through a rectifier to
produce a DC power. The symbols 7722, nin&t, n"°° represent the total radiation efficiency,
the total matching efficiency, and the rectenna efficiency, respectively.

[6], results were presented of upper bounds for the receiving efficiency for 5 different
metals in terms of the dimensions of a simple nano dipole antenna. The receiving
efficiency also takes into account the matching with the rectifier circuits. For silver
dipoles, a maximum receiving efficiency of about 54% was found and for Al dipoles,
this value was about 46%.

In this paper, the goal is to increase the maximum receiving efficiency by using the
shape of the nano dipole. The main idea is to use the bowtie topology, which is a
well-known topology to obtain a broad band in classical antenna design at microwave

frequencies.

II. THE RECTENNA TOPOLOGY

A nano-rectenna system consists of two parts, see Fig.1. The first part is the
nano antenna or nantenna that converts the incident light into electric current at
Terahertz frequencies flowing in the body of the antenna and available at the port. In
this conversion, the total radiation efficiency is a key parameter and the first factor
in the total efficiency product.

The second part is a rectifier that converts the THz current at the nano antenna
output port to DC electrical current, generating a DC power in the load.

At present, there are still two main challenges in the design of nano-rectenna

systems. The first one is the realization of rectifiers at optical frequencies. In a
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conventional rectification, i.e. at RF and microwave frequencies, a diode is used.
Such rectennas have been proven to successfully convert microwave radiation into DC
power, achieving conversion efficiencies as high as 91% [7]. MIM (metal-insulator-
metal) point contact diodes based on Nb2Os and Nb—T'iO, have been fabricated and
successfully tested at somewhat lower frequencies [8]. However, present-day diodes
are still unable to efficiently rectify at visible and near-infrared frequencies. Since
thermodynamic calculations suggest that rectennas can convert any electromagnetic
radiation to DC power with a conversion efficiency of at least 85% [9], the search for
the proper diode technology is currently fully in progress.

The aim of this work is to deal with the second great challenge: the optimization
of the shape of the nantenna topology in order to maximize the rectenna efficiency
for the visible and near-infrared bands. In this work, the bowtie topology is consid-
ered, since it is a well-known topology to generate broadband behavior at microwave
frequencies. Three materials are considered: Gold, Silver, and Aluminum. Al has the
great advantage that its oxide is transparent at the frequencies targeted, indicating
much lower losses than for the oxide of Silver [10, 11]. The values of the permittivi-
ties are taken from [12]. The efficiency calculation is performed in the wavelength (of
frequency) range between 300nm and 1300nm, where about 80 percent of the energy
of the sun is present. The optimization procedure follows the same lines as in [13]. Tt
takes into account the nantenna input impedance and rectifier impedance since they

determine the matching between these two components.

III. TOPOLOGY AND ANALYSIS TOOLS

The nantenna topology studied in this paper is depicted in Fig.2. The dipole con-
sists of two trapezoidal arms on top of a glass (Si0,) substrate, which is transparent.
The gap between the two dipole arms is G = 10nm, which is conform to the resolu-
tion obtainable with current fabrication technology. The height H and the short base
length W are both 40nm. These values are suited for the frequency range targeted
and can easily be fabricated with existing fabrication technology. G, H, and W are
kept constant. The dipole length L is varied between 100nm and 400nm, with a
step of 20nm. The base angle in the bowtie topology is ®. The base angle is varied
between 0° and 50° with a step of 5°. The power captured by the bowtie is fed to

the rectifier circuit which is assumed to be present near the middle of the gap. The
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FIG. 2: The trapezoidal dipole or bowtie studied: (a) dimensional parameters, (b) the port
with voltage and current at the output where the rectifier circuit is assumed.

incident electric field is polarized along Y-axis.

For mutual validation purposes, numerical calculations were performed using two
totally different solvers. The first one is Lumerical, using the FDTD technique [14].
The second one is MAGMAS, an in-house developed solver using integral equations
solved with the method of moments(MoM) [15-17].

The voltage and current at the output port of the nantenna are determined as
indicated in Fig.2(b). The voltage is the integrated electric field between the two
arms. In Lumerical, the current is obtained through Ampres law from the loop integral
of the magnetic field around the gap. The 3D setup, PML boundary conditions
are selectedand mesh sizes are chosen Az = 2nm, Ay = 1lnm, and Az = 2nm.
In MAGMAS, the delta gap current source concept is used, see [15]. The input

impedance of the nantenna is

G2
f Eydy
—&)2
f HdS

loop

Zant =
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IV. CALCULATION OF EFFICIENCIES

A nano-rectenna systems efficiency is the product of the nantennas total harvesting

efficiency n7%¢, and the matching efficiency 7%, between nantenna and rectifier

rec __ __rad mat
n = Tltotal ~ Thotal (2)

The total radiation efficiency is defined by how much energy can be harvested by the
nantenna over the complete band targeted. It can be derived from the conventional

radiation efficiency as [13]

Astop ch nrad(}\)d)\

rad Asta t

Niota (3)
total — f>\ o P (AN

start

where A is the wavelength of the incident light, 7*?()\) is the classical radiation
efficiency of the nantenna as a function of the wavelength, and P;,. is Plancks law for
black body radiation

21hc? 1

Pine = o S ghe/ T ] (4)

where T is the absolute temperature of the surface of the sun (in K), h is Plancks
constant (6.626 - 10734.J - s), ¢ is the speed of light in vacuum (3 - 10%m/s), and k is
the Boltzmann constant (1.38 - 10723 J/K). The radiation efficiency of an antenna is
defined as

rad rad
P P

rad __ o
Y o Pinject o Prad + Ploss (5)

where P is the radiated power in transmit mode, P™7¢ is the power injected at
the terminal, and P'*% is the power dissipated in the material of the antenna.

The equivalent circuit of the total rectenna system is depicted in Fig.3. Based on
the circuit, the total matching efficiency is derived as [13]

ot fA:::Z Pmc nrad()\)nmat(A) d\ (6)

Motal = top
f/\ Pipe(N)nred(X)dA

start

where ™ is the matching efficiency of the nantenna rectifier system as a function
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FIG. 3: Equivalent circuit for rectenna system.

of frequency. This parameter is calculated as

4RrecRant
N |Zrec + Zant|2 (7)

mat

Ui

where Z,.. is the impedance of the rectifier, Z,,: is the input impedance of the
nantenna, R,.. is the real part of the rectifier impedance, and R,,: is the real part
of the nantenna input impedance.

The optimization procedure works as follows. For each concrete topology con-
sidered, all the parameters related to the nantenna are calculated by the numerical
solvers used. The impedance of the rectifier Zrec is then determined in the form of
a second order polynomial with coefficients and with boundaries set for the possible
range of the impedance values:

ond .z =C2 N4+ CL N+ O

rec rec rec

Rmin < Re (C0.,) < Rmar (8)

ant rec ant

— [ Xane|™® < Im (C%.) < |Xane|™"

rec

man
ant

max

where and R]'4* are the minimum and maximum of the nantenna resistance,

and | X pne|™* is the maximum amplitude of the dipole reactance, respectively. The
coefficients of this polynomial are optimized in such a way that the total matching
mat

efficiency 0}%¢, is maximized. A Particle Swarm Optimization (PSO) algorithm was

chosen as the optimization tool.
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TABLE I: Comparison between MAGMAS and Lumerical for a normal Al dipole
(with ¢ = 0°).

Length of Total efficiencies with MAGMAS Total efficiencies with Lumerical

dipole, nm |Radiation %|Matching %|Rectena %|Radiation % |Matching %|Rectena %
100 27.38 81.79 22.39 26.47 81.77 21.64
120 34.17 86.36 29.51 32.79 86.75 28.45
140 39.6 89.14 35.3 37.99 89.72 34.09
160 43.77 90.36 39.55 41.95 91.08 38.21
180 46.9 90.57 42.48 44.91 91.51 41.1
200 49.22 90.21 44 .4 47.07 91.59 43.11
220 50.97 89.53 45.64 48.58 91.52 44.46
240 52.28 88.78 46.41 49.63 91.42 45.37
260 53.12 88.17 46.83 50.23 91.29 45.86
280 53.48 87.86 46.99 50.5 91.46 46.19
300 53.43 87.65 46.84 50.39 91.55 46.13
320 53.06 86.85 46.08 50.0 90.38 45.19
340 52.43 85.58 44.87 49.37 88.67 43.77
360 51.65 84.28 43.54 48.69 87.24 42.48
380 50.82 83.07 42.22 47.92 85.99 41.2
400 49.99 81.95 40.97 47.14 84.94 40.04

V. NUMERICAL RESULTS

In this section first the solver used in this work is compared to the solver mainly used
in [13]. Then, simulation results are given for a systematic set of bow tie structures.

The result of the solver comparison is given in Table I. The case considered is
¢ = 0°. It is clearly seen that the two solvers agree extremely well, yielding a difference
for the rectenna efficiency of maximum 1.3%. Since fabrication and measurements of
nano antennas is extremely costly and time consuming, it is quasi mandatory to base
analysis and design on full wave simulation tools.

Fig. 4 gives all relevant efficiencies for the bow tie topology: the total radiation
efficiency, the total matching efficiency, and the rectenna efficiencies, respectively, for
silver, gold and aluminum structures, as a function of the length and base angle of
the bow tie. It is clearly seen that the total radiation efficiency has higher values for
all three metals for base angles higher than 0°. This is a clear indication that the
bow tie is intrinsically better for harvesting applications. For each metal, the highest

efficiencies can be found for a base angle between 35° and 45° and a dipole length
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TABLE II: Maximum total radiation efficiency for normal (straight) dipole and
bowtie topology.

Straight Topology|Bowtie topology
Lonm|¢| Oige | L| o] b
Ag 200 |0°| 64% |300(45°| 80%
Au 220 |0°] 35% |280|45°| 45%
Al 280 [0°] 51% |280/40°| 61%

Material

TABLE III: Maximum rectenna efficiency for normal (straight) dipole and bowtie
topology.

Straight Topology|Bowtie topology
L,nm| ¢ grec L ¢ grec
Ag 220 [0°] 58% [300(45°| 72%
Au 240 [0°] 32% |280|45°| 41%
Al 280 [0°] 46% [240(30°| 57%

Material

between 200nm and 350nm. The total matching efficiency graphs are rather smooth
for any metal. Efficiency values higher than 90% can be found for any base angle.
Rectifier impedances were assumed optimal as explained in the previous section.

A comparison of the maximum total radiation efficiencies for ¢ = 0° (normal dipole)
and the overall maximum for the bow tie topology is shown in Table II for the three
metals. It is clearly shown that the bowtie topology is able to increase the radiation
efficiency by 16%, 10%, and 10% for silver, gold, and aluminum, respectively. For
Silver, a very high resulting value of 80% is found.

A comparison of the maximum rectenna efficiency for ¢ = 0° (normal dipole) and
the overall maximum for the bow tie topology is shown in Table III for the three
metals. The increase here is 14% for silver, 9% for gold, and 11% for aluminum.
Minimal rectenna efficiency falls on gold with 41% and for other two metals, depending
on angle and length, it is usually higher than 50%. Rectenna efficiencies of Ag and
Al could be obtained in similar way in form tables.

The maximum rectenna efficiency reached is 72% for silver, 57% for aluminum, and
41% for gold. Note that although the efficiency of naked silver is considerably higher
than for aluminum, this metal has clear advantages. First, the transparency of the
oxide of aluminum is a great advantage. Second, the rectenna efficiency for aluminum
is sensitive to varying length between 200nm and 340nm, and base angle between 25°
and 40°, yielding a considerable result always higher than 50%. This is illustrated in
Table IT and III.
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FIG. 4: Radiation efficiency of bowtie Al dipole as a function of wavelength (frequency) and
base angle, L = 240nm.

The radiation efficiency, real part of input impedance, and imaginary part of input
impedance of the optimal bowtie nantenna structures, both for Ag (length of 300nm

and angle of 45°) and Al, (length of 240nm and angle of 30°) are plotted in Fig. 4.

VI. CONCLUSION

In this paper, a bowtie topology is considered as the nantenna in a rectenna for
solar energy harvesting purposes. Its total rectenna efficiency is calculated for Ag,
Au, and Al Tt is shown that the bow tie topology is able to increase the total rectenna
efficiency compared to the straight dipole nantenna by 10 to 15%. The final efficiencies
reach an impressive 72% for silver and 57% for aluminum, which is about three and

two times larger than for existing commercial silicon solar cells.
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GPU-accelerated simulation of SU(2) flux tube profiles
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We present longitudinal and transverse profiles of the flux tube between static
quarks at temperatures around the deconfinement transition. Exploiting the com-
putational power of a GPU accelerator, we achieve a much higher statistics of our
simulation and an improved signal to noise ratio. This has allowed to investigate
larger lattices as well as larger separations between the quarks than in our previous

work.

I. INTRODUCTION

Looking at behavior of matter when it undergoes the phase transition from confined
to deconfined phase is still an appealing topic in high energy physics. In the confined
phase quarks are bound together forming hadrons. A single isolated quark has never
been observed in nature and any attempts to separate them were unsuccessful so
far. Reason of this is that potential energy between two quarks rises linearly with
the distance between them, which means isolating them would need infinite amount
of energy. But there are numerical evidences that the slope of the linearly rising
potential curve decreases as the temperature increases. We mainly are interested in
the longitudinal and transverse profiles of the flux tube when it undergoes the phase
transition.

Non-perturbative phenomena such as quark confinement can be most successfully
studied by using the lattice gauge theories described on a lattice of space-time. Lattice
numerical simulation has played an important role in the theoretical description of
phenomena in high energy physics and Monte Carlo methods have proven to be very
effective in its study.

A common special problem which one encounters in lattice numerical simulation is
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that the signal gets drowned in the statistical noise when loop size is increased. For
the flux tube simulation, it becomes difficult to get clear signal when ¢g separation
is increased. Also the computation of expectation values and correlation functions
of large Wilson loops is often extremely time consuming. As a result, the lattice
numerical simulation of QCD is a highly demanding task computationally and requires
advanced and powerful computers.

Generally, there are two ways of improving results of computer simulation. One
can improve it by using advanced computer architectures or improving techniques
used in simulation algorithms. In recent years computer power has increased quite
dramatically and computer simulation algorithms have also been steadily refined.
Here we have used the first method to reach much higher statistics of our simulation

and an improved signal to noise ratio.

II. OBSERVABLES

Interactions between quarks are mediated by gluons which form flux tube. There-
fore, exploring quark confinement means exploring the flux tube at the two ends of
which a quark and an antiquark are located. Details of the interaction can be seen
by scanning the nature of the flux tube by calculating the central observables that
govern the events that take place in this region. They are the chromoelectric and
chromomagnetic field strength components in the flux tube that can be extracted
from the following Polyakov loop - plaquette correlations

_ B [{LO)LH(R) U (x))
f;w(Rv X) - E <L(O)L+(R)> - <D;w> . (1)

Time propagation of the two static quarks sitting at the distance R from each other
are represented by Polyakov loop L and its conjugate Lt. The plaquette variable 0J,,,
at distance x from the line connecting the ¢g pair, with the orientation p, v, measures
the field strength f,,. 8 is the coupling constant and « is the lattice spacing. Three

space-space plaquettes correspond to magnetic components

fi2 = %(_Bi)v Jiz — %(_BJQ_)v Jas — %(—Bﬁ) (2)
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and three space-time plaquettes correspond to electric components

fo4 — %Ei, fag — %Ei, fra — %Eﬁ. (3)
The subscript || denotes the components that are oriented parallel to axis connecting
the two sources, while | denotes the components that are oriented perpendicular to
the axis. Flux tube profiles thus can be extracted from Eq. 1 by varying the distance
x and the orientation of the plaquette with respect to the Polyakov loops. We want
to look at the longitudinal and transverse profiles of the components expressed in Eq.

2 and 3.

III. DETAILS OF THE SIMULATION

Pure gauge theory with gauge group SU(2) and standard Wilson action has been
simulated on the lattice of size 32 x 122 x 6. As we are interested in having larger
qq separations we have used an extended number N of lattice sites in the direction
of the ¢ axis. Update algorithms [1-5], the reference point [6] and link integration
method [7] which were used in the previous work [8] for error reduction are kept the
same.

We accelerate the generation of the gauge field configurations by executing the
simulation program on a single NVIDIA GPU accelerator. Mapping of the lattice
SU(2) gauge theory to the GPU by means of the CUDA programming model [9] is
done by developing the code given in [10] by Cardoso and Bicudo.

Exploiting the computational power of the GPU accelerator, we were able to in-
crease the number of our measurements to 400000. For the thermalization of the
gauge configurations 10000 measurements have been used. Temperature and ¢g sep-
aration ranges at which the simulations have been performed are 0.757, — 1.297, and

0.4fm - 2.5fm, respectively.
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IV. RESULTS

A. Longitudinal and transverse profiles

A Longitudinal profile shows how the field strength value is distributed along the
direction parallel to the axis connecting ¢ and §. Longitudinal profiles at z; = 0 of
the parallel electric component 1/ 2Eﬁ (R, x) are displayed on the left column of Fig.
1 at the given values of separation, namely at Ry/o = 1.6, 2.0, 2.5, 2.8, 3.2 and 3.7
and their corresponding transverse profiles at x| = R/2 are displayed on the right
column of the figure at the same values of separation. The plotted results and the
separation values are in units of the string tension.

Same plots for the parallel magnetic component are depicted in Fig. 2. Here we
confirm with higher accuracy that £, ~ B| =~ B < E| also at high temperature.
Thus, we have chosen only parallel components to show in the figures.

For the plots in the left column of the figures one quark source is placed at |jv/o = 0
and another one is at distance R+/o from it. Blue star points correspond to the data
at lower temperature, while red square points correspond to the data at higher tem-
perature. There are pink circle points only on the plots for the largest two separations
of both Fig. 1 and 2, which denote the data at a temperature higher than that of the
red one for that plots.

The reason why there are only two to three data differing in temperature for each
plot, while we have performed the simulation at five values of the parameter T is the
fact that ¢q separations that were equal in lattice units will be no longer equal in
physical units. Because it is expressed as Ra and a takes a different value for each
B. Thus collecting data with matching physical values of separation but different
temperatures in order to compare results at a fixed value of Ra gives the reduced
number of data to be compared.

As one reads the plots going down the parameter separation value R+/o increases
from 1.6 to 3.7. If one looks at the central region between the two sources one
can see that the field strength value at the middle point between the two sources
decreases with rising temperature and the distribution approaches the one of two
isolated quarks as the temperature goes to T.. Increase in separation accelerates the
decreasing process with temperature.

Drop in the middle point value is clearly visible in the transverse profile plots. For
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FIG. 1: (Left:) Longitudinal profiles 1/2Eﬁ(x”,w¢ = 0) and (Right:) transverse profiles
1/2Eﬁ (z) = R/2,zL) at the given values of R from the lattice of size 32 x 12° x 6.

a transverse profile, the initial point at x, /o = 0 corresponds to the middle point
between the two sources and its value vanishes as a function of 2, /o for a given T.
When T increases the initial point for the transverse profile but the middle point for
the longitudinal profile drops from around 1.6 to 0.6 for 1/2E¢/0” at Ry/o = 1.6 in
Fig. 1 for example. Same feature holds for other values of separation as well as for

the magnetic component depicted in Fig. 2.

B. Potential and the string tension

From above plotted data we have computed the color averaged potential between

a quark and an antiquark pair by using the equation

(LO LY (R)) = e~ VIRD/T (4)
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FIG. 2: (Left:) Longitudinal profiles 1/2Bﬁ($”,$L = 0) and (Right:) transverse profiles
1/2Bﬁ (z) = R/2,zL) at the given values of R from the lattice of size 32 x 12* x 6.

and the results are shown in Fig. 3 in lattice units. The figure shows the potential as
a function of R, the range of which is 4a — 16a, for various temperatures. Our data
confirm what we already know from quark confinement that the potential between ¢
and q rises linearly with the distance between them. The slope of the potential curve
decreases when temperature increases, meaning that the string tension is no longer
constant but is temperature dependent.

These potentials have been fitted to three potential forms

T 1 1
Vi(R,T) =V, — {E ~ & arctan(ZRT)} = + {a
T,oo 2.9 1 T )
-3 2 P — 2RT
3T —|-3T arctan(zpr)}R—l— 5 In[1 + (2RT)"], (5)

Vo(R,T) = Vo + o(T)R +~T 1n(2RT) (6)
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from the lattice of size 32 x 12* x 6.

TABLE I: Results for the free parameters from fit of the potential to Eq. 5.
N.| B |T/T. aVy a’o x?

2.35( 0.75 | 0.94(2) | 0.091(2) | 12.89
2.39 0.86 | 0.96(1) | 0.055(1) [172.73
6 12.43]0.98 | 0.876(5) | 0.0340(4) |153.46
2.47| 1.13 {0.7501(5)|0.02812(5) | 10.08

and

Vo(R,T) = Vo — & +o(I)R (7)
in order to extract T-dependent string tension values, first allowing for a temperature
dependent string tension instead of zero temperature string tension in Eq. 5 and
then accounting for a logarithmic behavior with Eq. 6 and thirdly accounting for
a Coulomb type behavior for small ¢ separations with Eq. 7. The fit results are
displayed in the Table. I, IT and III, respectively.

The resulting string tension values in the Table. I can be compared with zero

temperature string tension values, obtained from renormalization group inspired in-
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TABLE II: Results for the free parameters from fit of the potential to Eq. 6.

N-| 8 |T/T.| aVs a’o(T) ~ x?
2.35( 0.75 | 0.84(1) |0.0099(97) |2.98(52)| 3.14
2.39] 0.86 | 0.841(8) | -0.013(4) |2.51(25)|16.80

6 |2.43] 0.98 | 0.785(2) | -0.0085(8) | 1.01(5) | 6.74
2.47| 1.13 |0.6894(2) |-0.00220(6)|0.231(4) | 0.23

TABLE III: Results for the free parameters from fit of the potential to Eq. 7.

N:| 8 |T/T.| aVo a’o(T) o x?
2.35] 0.75 [1.40(10)| 0.036(6) |2.25(45)] 3.95
2.39] 0.86 | 1.33(5) | 0.008(2) |2.01(25)|26.12

6 |2.43] 0.98 | 0.99(1) | -0.0005(6) | 0.84(6) |15.19
2.47| 1.13 |0.737(2) |-0.00039(8) |0.197(9) | 1.36

terpolation ansatz to data from [11] and also with our previous fit results in [8]. The
string tension values as determined from these fits are decreasing with temperature

confirming T-dependent string tension at non-zero temperature.

V. CONCLUSION

We have studied distribution of chromoelectric and chromomagnetic field strength
components in the flux tube connecting a quark and an antiquark sources by means
of the lattice numerical simulations. Longitudinal and transverse profiles of the dis-
tribution have been extracted from Polyakov loop - plaquette correlations at the
temperatures around the deconfinement phase transition. The field strength value
at the middle point between the two sources clearly decreases with rising tempera-
ture. By improving performance of SU(2) flux tube simulation program parallelizing
it on a NVIDIA GPU accelerator, we were able to reach much higher statistics of our
simulation. This enabled us to obtain clear signal of longer flux tubes with larger
separations which were unreachable during our previous simulations performed on
CPU. Field strength distribution values and the T-dependent string tension values in
the flux tube have been redetermined with higher accuracy. As precision is improved,

the string tension values tend to decrease compared to the previous results.
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Kinetic study of coal under heat treatment
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The high temperature has been set up directly in the resonator. Established ther-
mal reaction allows detecting transient, short lived, highly reactive radicals. Brown
(lignite) coals such as Tevsh, Tugrug and Khotgor showed the similar behavior in
the heat treatment. However, it is complicated for the high rank coals in the used
temperature. The complexity structure of coal is independently of the coal rank,

the microwave power and temperature used.

I. INTRODUCTION

Coals come to be distributed in various parts of Mongolia with over 152 billion tons
of coal reserves, mainly lignite, brown and bituminous metamorphism [1]. So far, the
country coal use has been mainly for the nation’s electricity generation, precisely, the
electricity and heating supply is directly from coal burning in electro stations and
homes over the years and this will stay as the largest single source of overall domestic
energy production in the nearest future. This has been called the investigation on
Mongolian coal structure and chemical processing [2-16] and it will increase with
a growing demand of an interest on coal mining. Furthermore, for the proper use
of national wealth such as a coal which can be converted through proven, existing
modern technology into clean coal it is highly required to push the structural analysis
of Mongolian coals in an advanced level.

For the characterization of coal, the coal rank studies, the type of organic (e.g.
macerals) and inorganic (e.g. minerals, trace elements) constituents within coal play
significant role. In addition, for energy production applications the essential prop-
erties such as calorific value, volatile matter, moisture content, elementals (carbon,

hydrogen, oxygen, sulphur, nitrogen) content and behavioral characteristics as a lig-

*Klectronic address: munkhtsetseg_sOnum.edu.mn
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uefaction yields’, coking propensity and combustion efficiency are in basic interest.
In the latter case the paramagnetic centers naturally present in coal can serve as
probes to study local properties without affecting the original composition of coal. In
the present work a high temperature electron paramagnetic resonance (EPR) spec-
troscopy is applied to study coals and their reaction. The heat treatment on coal
samples inside the EPR cavity has the capability of monitoring thermally induced

transient free radicals in coals.

II. EXPERIMENTAL

Samples. Six coal samples from the different Mongolian coal deposits were studied

by EPR spectroscopy.
Sample mass is measured on the Mettler Toledo AE 260 micro balance and size on
SMZ-140 series Stereomicroscope with magnification range 40. Sample preparation for
the analysis was performed in accordance with standard procedures of coal chemistry:
the samples were mixed, crushed initially in a breaker and then in a mill to a size of
0.05 mm or less for elemental analysis measurement and to a size of up to 5 mm for
spectroscopic analysis.

Further the coals in this work were grouped into their provenance by basins or ar-
eas in the country which can be the followings: Western Mongolian province (Mongol
Altai, Valley of Great Lakes), Southern Khangai, Ikh Bogd, and Ongi river basins
(Valley of Lakes), South Gobi basin (Southern Mongolia), Orkhon-Selenge area (Cen-
tral and Northern Mongolia) and Eastern Mongolian province (Eastern Mongolia)
how determined in [5].

Grouped coal places and their deposit names and as well as the element contents
are given in the table 1 . The determination of the elements C, H, N, O and S is car-
ried out with instruments of the company LECO at the Micro Laboratory for Organic
Chemistry (ETH, Zurich). The samples were digested first and the combustion prod-
ucts — carbon (CO3), hydrogen (H20), sulfur (SO3) and oxygen (CO,) are analyzed
quantitatively by infrared spectroscopy. Nitrogen (Ns) is determined by a thermal
conductivity detector. These variables are measured in weight percent (wt. %) and
are calculated in the air—dried (ad) base.

EPR measurement. Measurements were performed with a Bruker Elexsys IT E500

spectrometer (ETH, Zurich) equipped with a high—temperature EPR cavity. Exper-
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TABLE I: Elemental analysis of coals

Basin/ Coal deposit/ |C, | H*, | O, | Nod, | §ed,
Area sample wt. % | wt.% | wt.% | wt. % | wt.%
Eastern
Mongolian Tevsh (Te) 51.13| 5.47 |35.40] 0.77 | 0.36
province Tugrug (Tu) 59.41| 3.28 | 3.92 | 1.45 | 0.34

Southern Khangai,
Ikh Bogd, and
Ongi river basins | Khotgor (Kho) [68.20] 4.56 |11.08| 2.03 | 0.40

Western
Mongolian Maanit (Ma) 74.75| 5.56 | 9.14 | 1.65 | 0.47
province Khushuut (Khu) [80.85| 4.09 | 5.79 | 2.07 | 0.33
Central

and Northern
Mongolia Saikhan-Ovoo (SO)[84.26| 2.84 | 594 | 2.21 | 0.35

iments are conducted at a frequency 9.20 GHz and modulation of 100 kHz provided
by the modulation unit. A microwave power of 30 dB is used throughout the mea-
surements.

The spectrometer was equipped with a super high Q-factor resonator (ER 4122
SHQE) which has a cylindrical shape TE0O11 cavity. For a standard procedure, 20
mg samples a size of ~ 0.05 mm or less placed in a 0.4 mm quarts EPR sample tube,
which was inserted directly into the high—temperature cavity.

Modulation amplitude and time constant of EPR registration were chosen from well-
known requirements for undistorted registration of the first derivative resonance ab-
sorption signal by magnetic induction.

EPR spectra of the studied coals were registered as the first derivative of the mi-
crowave absorption versus applied magnetic field. The parameters of the EPR spectra:
g-factor, linewidth (AH,,) and integral intensity (I,,) were evaluated. g—factor was
determined as ¢ = hv/BH,, where h is the Planck constant, 8 the Bohr magne-
ton, v the microwave frequency, and H, is the resonance magnetic induction. The
linewidth (AH,,) was determined as the difference of field positions of maximum
and minimum of the first derivative EPR spectrum. The integral intensity (I,,) is
the distance between maximum and minimum of the first derivative EPR spectrum.
Heating available temperature range was from room temperature (~ 26°C) to 500°C'.

To prevent oxidation by air, the sample tube was degassed at low vacuum (a few
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pascals) and flowed by nitrogen gas (kept at a constant flow rate).

In this experiment, the only relevant ESR—parameter is the peak—to—peak ampli-
tude of the first derivative signal in arbitrary units, taken as a measure of the number
of radicals in the sample. The EPR spectrum was measured at every 50°C' and
during heating and cooling (after heat treatment) room temperatures as well. EPR
microwave power saturation was measured at every 100°C heating temperatures.

EPR spectra of the coals were first measured at room temperature and after the
samples were cooled EPR spectra also were measured at room temperature. Simula-

tion of EPR spectra was done using the Matlab package EasySpin [17].

III. EPR MEASUREMENT RESULT AND DISCUSSION

Changes in the EPR parameters, such as peak-to—peak amplitude (I,,), linewidth
(AH) and g—factor, at room temperature before heating and cooling of the studied

coals can be seen in the table 2.

TABLE II: EPR parameters at room temperature (1 — heating and 2 — cooling)

EPR parameters
Coal sample|I,,/L, o | Lp(1) /1, (2)| AH,,, Gs|  g-factor
1 2 1 2 1 2
Tevsh 0.005[0.018 0.277 6.45] 6.84 {2.0075(2.0073
Tugrug 0.09810.219 0.447 1.61] 1.20 |2.0028|2.0028
Khotgor 1 10.012 83.33 2.10{11.24|2.0013|2.0029
Maanit 0.001]0.072 0.014 7.09| 3.86 [2.0074|2.0073
Khushuut [0.051] 1 0.051 4.491 0.93 {2.0035|2.0035

Saikhan—Ovoo|0.007|0.693 0.010 1.61| 2.08 [2.0045]2.0031

The EPR spectra of coals registered at room temperature before heat treatment
and cooling are shown in figure 1.
Figure 2 shows the general profile of peak-to-peak amplitude as a function of tem-
perature for the studied coals.

The dependence between the temperature and the peak—to—peak amplitude corre-
sponds to the Curie law for the high carbon contained coals Maanit, Khushsuut and
Saikhan—Ovoo (Table 2, cooling from 500°C' to room temperature) but contradictious

for the lignite coals such as Tugrug, Tevsh and Khotgor.
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FIG. 1: Normalized EPR spectra of coals (solid line spectrum — before heating and dashed
line spectrum — cooling/after heating. Abbreviations of coal sample names are quoted from
table 1.

These dependences behave similarly with maximum around 200 — 300°C' for the
lignites Tevsh and Tugrug and subbituminous Khotgor coal. This increase can be
correlated with the weak bonds such as benzyl phenyl ether type C-O linkages or
dibenzyl type C—C bonds dissociation in coal structure [18, 19]. Further, a decrease
of the amplitude till 500°C' causing the major loss of hydrogen is observed. This bond
breakup point could not been reached in the used temperature for the bituminous coals
(Saikhan—Ovoo, Khushuut and Maanit).

Temperature dependence for these coals behaves differently. Its peak—to-—peak am-
plitude is high from room temperature up to 300°C' and goes abruptly down at high
temperatures for Saikhan—Ovoo coal. Saturation curve presents the disappearance of
the narrow line from this temperature. This phenomenon can be observed in Maanit
coal at 500°C where it has maximum point of amplitude and appearance of the narrow
EPR line.

The observed changes in linewidth were relatively small in Tevsh, Tugrug, and
Saikhan-Ovoo. The linewidth has strongly broadened in Khotgor coal. Generally,
linewidth dependence versus temperature plots the jumps from 26 to 100°C (fig 3).
Despite the tendency of line width broadening for Tevsh and Tugrug and decreasing
for Khotgor and Khushuut coals in the up going temperature can be considered. ¢—

factor decreases in the increasing temperature for the coals. In Khotgor coal g—factor
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FIG. 2: Temperature dependence on peak—to—peak amplitude of EPR spectra of coals.

increases large from 400 to 500°C. The saturation measurement of these coals at
every 100°C' temperatures behaved differently for each coal. In the figures 4 below

show the power saturations for each coal. For Tevsh coal the EPR is singlet and
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FIG. 3: Temperature dependence of normalized EPR spectra line width of coals

all dependences from room temperature to 500°C' are homogeneous and saturated,
presenting the maximum at the lower power level, following a considerable EPR in-
tensity quench (fig 4 Te: dependences 1-6). EPR spectrum of Tugrug coal consists

of two components (broad and narrow) at high power level. The saturation at all
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FIG. 4: Power saturation curves for studied coals at different temperatures (1 — room tem-
perature (~ 26°C), 2 — 100°C; 3 — 200°C; 4 — 300°C; 5 — 400°C; 6 — 500°C)

temperatures is exhibiting leveling that no having subsequent decrease in EPR signal
amplitude (fig 4 Tu: dependences 1-6).

At lower temperatures (from 26 to 200°C') EPR spectrum homogeneously saturated
with maximum at high power (~ 25 mW) on Khotgor coal (fig 4 Kho: dependences 1—
3). At 300°C this singlet spectrum slightly broadens at high power. From 400°C' the
homogeneous saturation degree is getting smaller that can be caused the appearance
of the spins with short relaxation time (fig 4 Kho: dependences 4-6).

From room temperature up to 400°C' the homogeneous saturation with exhibition
of maximum at low power level were observed for Maanit coal (fig 4 Ma: dependence
1-5), but at 500°C the EPR spectrum was split to two components and the saturation
curve leveled at high level of powers (fig 4 Ma: dependence 6). Homogeneous, single
spectrum at room temperature of the Khushuut coal starts to split to two parts from

temperature 100°C'. EPR spectra consist of two components show the similar behavior
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of saturation that it saturated at lower power and keeps the EPR signal intensity (fig
4 Khu: dependence 1-6). At higher microwave power levels at temperature interval
of 26 — 400°C' EPR spectrum of the Saikhan-Ovoo coal is a two—component and the
spectrum saturated at low power levels (fig 4 SO: dependence 1-5). At 500°C the

spectrum saturated at highest power level showing splitting on it.

IV. CONCLUSION

In the conclusion, one can consider that the established thermal reaction allow to
detect transient, short lived, highly reactive radicals. Brown (lignite) coals show the
similar behavior in the heat treatment. However, it is complicated for the high rank
coals in the used temperature. The paramagnetic centers related to the singlet EPR
spectrum of brown (lignite) Tevsh coal is the most homogeneous type among the
studied coals. The complexity structure of coal is independently of the coal rank, the
microwave power and the temperatures used. The "natural” asymmetry of the EPR
line of Khotgor coal can be not due to the complex structure of the organic matter.
Therefore, the paramagnetic centers with low concentration and short relaxation time

appeared at high temperatures (400 and 500°C') might be the effect of ash content.
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Finite Quantum Electrodynamics

Kh.Namsrai, B.Munkhzaya, M.Purevkhuu
Department of Theoretical Physics, Institute of Physics and Technology,
Mongolian Academy of Sciences, Peace Ave. 54b, Ulaanbaatar 133830, Mongolia

It is known that the origin of the divergence problem in quantum electrodynam-
ics is related to the singularity of classical electrostatic potential. A modification
of its Coulomb potential at small distances leads to the change of the photon
propagator which allows us to construct finite and gauge-invariant quantum elec-
trodynamics. We establish restriction on the value of the so-called fundamental
length ¢ < 10™*%cm from the experimental data on the measuring anomalous mag-
netic moment of leptons. It is well known that any modification of the spinor
propagator (in particular, electron one) gives ride to many problems connected
with verification of basic principles of the theory like gauge invariance, unitarity,
causality condition and so on. However, it turns out that square-root modifica-
tion of the spinor propagator is free from these difficult problems. Here we also

construct a finite square-root quantum electrodynamics.

I. INTRODUCTION

A beautiful quantum electrodynamics developed by many physicists of the 20"
Century (for example, see [1-5]) has played a vital role in the construction of the finite
and gauge invariant so - called standard model [6,7] of the particle physics. What
was an initial origin of this theory. It is natural that it was classical electrostatic field
theory. Generally speaking, as usual, classical and quantum theories are the models

of point - like particles. For example, the Newtonian and Coulomb potentials

G e

UN(T) Uc(r) (1)

4  dnr

are the potentials of the point - like sources of mass and charge, respectively:

pn(r) =mé(r),  po(r) = ed(r)



56  Kh. Namsrai et. al., Finite Quantum Electrodynamics

where 6(r) = §(x)d(y)d(z) is the Dirac § - function with properties:

/Oo ded(z) = 1, /Oo o () f(x) = £(0)

— 00 — 00

and etc.
It is well known that the inverse Fourier transform of the Coulomb potential for

point - like charge is

Dp) = ; [ dreuen) = ©

and its relativistic generalization in four - momentum space

1

D) = — 3)

gives the local photon propagator which leads to the divergent theory. Fundamental

importance is that the Coulomb potential (1) satisfies the Laplace equation
AUc(T) =0 (4)

where

0? 0? 0?

A= Ox? +3y2 +822‘

In principle, any modification of the Coulomb potential at small distances leads to
a violation of the Laplace equation (4). Here we find out more simpler and natural

changing of the Coulomb potential

e 1

Uc(r) = UL(r) = oy

(5)

which does not satisfy the Laplace equation (4) and gives modification of the photon

propagator (3):

D(p) = D'(p) = —5——Vi(-p°I*) (6)
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where

(1<p<2)

™ 1
~ Altngingn - T(1+nT2+n)

v(n)

Some time ago Markov [8] considered possibility of changing metric form
So=x?+y*+ 22 s>+ + 22 £

in his indefinite metric modification of the field theory.

The Poisson equation for the potential (5) takes the form

302

TR

On the other hand the basic equation for electric stress E = —grad¢ with extended

charges is

divE = 47p = —div grad¢ = —A¢,

A¢p = —4mp.

It means that in our case electric charge is not located at the single point and is

distributed continuously over the whole space with the density

_1_
P = (2 2R

with the normalization
/ crpr) =1

Therefore, in our scheme, an idealized concept of the point - like charge is absent.

as it should.
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Moreover, already in the early developments of quantum mechanics occur square -
root operators. In particular, it was the relativistic relation between energy and
momentum in a coordinate space representation that hindered its use [9]. A review of
the early and later works are contained in [10]. In bound - state problems of two - and
three - quark systems the Salpeter equation is often used [11-13]. Problems associated
with binding in very strong fields [14,15] string theory [16,17] and astrophysical black
holes [18-20] are applicable areas. Green’s function for differential equations of infinite

order like
m? — O0(z) = —6W (2) (9)

are treated in [21]. Green function (9) in momenum p - and x - spaces take the forms

00) =~ = [ D507 (10)
and
)= [ Bpn(NSG 9 an

where the distribution

dApm(A) =1, d\- X pm(X) =0
" 2 ]‘ 2
/ AAN p(A) = om (12)
and
Sop) =L ATP (13)
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1 1 4 —in(r— A+p

are the Dirac spinor propagator in corresponding spaces with random mass A. Here

the relations

m* —p*=(m-p)(m+p), DP=7"p

and the Feynman parametric formula

1 n1 —|— 712 1 -1 1
= dr n1— "o 1
b / vt g e (1Y)

are used. In this paper by using formulas (6), (10), (11), (13) and (14) we will con-
struct finite nonlocal and square - root quantum electrodynamics free from ultraviolet

divergences.

II. MODIFICATION OF THE COULOMB POTENTIAL AND
DERIVATION OF THE NONLOCAL PHOTON PROPAGATOR

We propose the following finite Coulomb potential at small distances:

e 1
AT /32 + g2 4 22 + 12

Us(r) = (16)

where [ - is some parameter dimension of length. Its value may be interpreted as a
size of an extended electric charge or as an universal constant like fundamental length
in physics. As mentioned above this modified potential satisfies the Poisson equation.

Let us calculate the Fourier transform of the finite potential (16):

/ d*re’Pr ( ¢ ) / sin pr,
i/ P B "

(p = |p|). By using the Mellin representation this expression takes the form

Dl<p>=i-i/_ﬂ_mdn )" r (3 )ty an
2V 20 g0 sinanI(24+ 2) 2

where (1 < 8 < 2).
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Further, taking into account Gamma - function relations:

ret o= 2 e e (2
@+20) = F—Z—r+r (5 +9)
T
(mI'(1—n) =
I —n) = — -
and after some elementary calculations, one gets
Vi (p*l?
Di(p) = # (18)
P
where
N 1) R
V212=—/ dn——-[1?p*] " 19
(1) = 5 e M [°p?] (19)
s 1 1
= ) 2
o0 = 305 S TA £ )T @ 1) (20
From these formulas one can calculate residues at the points n = —1,0,1,.... The
result reads
[
Di(p) = HKl(”PD (21)

where K (x) is the modified Bessel function of second kind or the Mac'Donald function

Ko =2 [ g (2
W) =555 Cfrice sin?m(T(A14+OT24+C)

(0<B8<1),z=|pll.
Finally, the modification of the Coulomb potential (16) gives rise to the following
nonlocal photon propagator [22]

ipT ‘/l <_p212>

& (22)

1
D, (x) = WQW/C#W

where the form - factor V; (—p?{?) of the theory is defined by the formulas (19) and
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(20).

Here our theory with the propagator (22) is very similar to the nonlocal theory
due to [22] and [23]. Notice that the simple modification of the Coulomb potential
(16) leading to the nonlocal photon propagator (22) is cornerstone of the finiteness
of classical and quantum electromagnetic fields. For example, now electrostatic self -

energy of the extended charge is finite at small distances:

1
Ero(r)U(r d&*rE?, E=-— d
/ relro / N

Here simple calculation reads

e? [ r e2 1_/(5 1\ 1 37
_c — “r(elr(z) —="<a.
v 87T/0 dr[r2+12]3 or'(3) 1 (2) (2) st 321"

Moreover, the nonlocal photon propagator (22) is finite at the origin

D, (0) = gW% : / dpp” Di(p?) =

2 14+¢
—B—ioo (Z) g26+4
_ li d
Imv S e20 _Biico sin7¢ T(1+ QT2+ QOT(2¢ +4)

where 2 < 8 < 3.

Calculation of residue at the point ( = —2 and taking the limit ¢ — 0 leads

1

! —
D},LV(O) - 47_(_2[2 gul/

= const.

It turns out that, in principle, due to finiteness of DLV(O) one can calculate vacuum

fluctuation diagrams, shown in Figure 1.

@+ &

FIG. 1: Primative Feynman diagrams for vacuum fluctuation

Finally, we indicate one important consequence of the photon propagator (22) with

the form - factor (19). If we want to calculate high order divergence integrals over
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—ﬂ—i“

FIG. 2: Integration contour in the formula (19)

the internal momentum variable p, like

L g0 [, BT

20 J_grice SR p? + A
for any order of v, then we can move integration contour in Figure 2 to the left
through points n = —2,—3, ..., in desired order, since in such type of integrals there
are no poles at these points. After integration result we can again move integration
contour to the right to calculate residues at the points n = —3,—2,—1,... so on.

This procedure of analytic continuation over complex variable 7 plays a vital role in

regularization scheme.

III. NONLOCAL QUANTUM ELECTRODYNAMICS

A. Introduction

Lagrangian functions of the nonlocal quantum electrodynamics arisen from the
modification of the Coulomb potential at small distances have similar structures as

the local theory [24].

L(z) = e: ¢(x)Ad,2)0(z) :

D Fl(x)FPY (x) - (23)
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where

0

Bz,

o~

Al z) = Au(Lz)y", & ="

Only in our case of the nonlocal theory, renormalization constants Z1, Z, Z3,dm are
finite and moreover Z7 = Z5 due to the Ward - Takahashi identity. Here ”chronologi-
cal” pairing (or T - product) of the fermonic field operators of electrons has the usual

local form:

_ e—w(r—y)
S =) = OTL@TWI0 = Gy [ d'r—— (24)

m—p—ie

while ”causal” function of the nonlocal electromagnetic field A, (I, ) in (23) takes the

form due to the formula (22)

Vi(=p*l?)
—p? — e

DLV(ZL‘ —y) = gWDl (r—y)=— (575)1/42 /d4p€—ip(rr—y) (25)

where V;(—p?I?) is given by formulas (19) and (20).

B. The Electron Self - Energy in NQED

The complete electron propagator in NQED is given by the sum

—i2m)~AS1p)| = [im) TS m)] + [i2m) TS m)] [i(2m) Su(p)]
x [—i2m)"'S(p)] + - -

where

The sum is trivial and gives

S)(p) =[m —p—3, —ie] "
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In the lowest order there is a one - loop contribution to ¥, given by in Figure 3:
—i (@) Sz — y)o(y) -
where
Si(z —y) = —ie*y,S(x — y)y. Dz —y). (26)

Passing to the momentum representation and going to the Euclidean metric by using

ko — exp(in/2)k4, one gets

Vi (k2 m—pg + kg
pr. E () (B)
27T / m? + (pe — kE)QﬂW

Here pr = (—ipo,p) » Y& = (=i, 7) and kg = (k4, k) . Taking into account the
Mellin representation (19) for the form - factor V;(k%l?) and after some calculations,
we have

e2 1 [P 1 w(n)(m2e2)ttn

Sip) = —— — d
) 8720 J_g4i00 Tin? mn [@2+n)

F(n,p) (27)

where

Fn,p) = ﬁ /01 du (1 ;“) o (1 - fl—zu) Hn (2m — pu) (28)

is a regular function in the half - plane Ren > —2.

Assuming the value m?2[? to be small, one can obtain (after calculation of residues

at the points n = —1,0):

Si(p) = 87T2 / du(2m — pu) In (1 - %u) +
-+£;{m<ip)@m—%@+ﬁ(%+mn)—mwu%+
+ ;Z;i (m212) {1112 (milQ) “ln (milQ) (3 + 4 (1)) +

Foap() (1 + (1) +2— %ﬂ , (29)

where (1) = —C,C = 0.57721566490 .. . is the Euler number.



65

p—k

FIG. 3: Diagram of Self - energy of a electron in NQED

FIG. 4: Vertex function in NQED

’\I\I\OW

FIG. 5: The vacuum polarization in NQED

C. Vertex Function and Anomalous Magnetic Moment of Leptons in NQED

Let us consider Feynman diagram shown in Figure 4. The following matrix element

corresponds to this diagram:

ie : ()L, (2, 2/y)¥(2) Auly) (30)

Analogously, in the momentum space and in the Euclidean metric, the vertex function

takes the form

~ 2 Vi ((pe — kp)?1?)
T - __“ /d4k ! ,
;L(p17p) (27_(_)4 F (pE — kE)Q ")/ X
m — kg — Qs m— kg

(31)

m? + (kg —I—pE)QW m? + k% Bt
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Again passing to the Minkowski metric and using the generalized Feynman parame-

terization formula (15), one gets

- 2 1 —B—ic0 U(TL) (m2l2)1+n
T (prip) = & = d Fu(n; 32
},L(p17p) 871 2% Btice Usmg ™ F(Z‘I‘n) ,U(777p17p) ( )
where
F,(;p1,p) = v F1(n;p1,p) + F2(0;p1,p)
Here
1 1 1 p1
Fl(n;php):—/ / / dadBdyo(l — a = — 7)o~ 71QHT
L'(=n) Jo Jo Jo
1 1 1 p1 X
Ex(nypr,p) = =———— dadBdvé(1 —a— 8 —v)a™ 71Q" x
5(1:p1,P) F(—l—n)/o/o/o Bdé( B—7) Q
1
X 3 [mQW — 2mq, + 4m(Bq, — apu)+
+ (ap = B9)v,.q + (ap — Bg)yp(ap — B7)] (33)

2 2 2
p q (p+q)
m2 - B'ymg - O[B m2 . (34)

Q=5+~r—-ay

Let us calculate the vertex function (32) for two cases: first, when ¢ = 0 and p has an
arbitrary value; second, when ¢ is an arbitrary quantity and p, p; are situated on the
m - mass shell. In the first case, assuming ¢ = 0 in the formula (33) and after some

standard calculations, one gets

Rarpor) = wy | d“( v ) (““W) *

2(1 4 n)up,(2m — up)
m? — up? '

. {W i (35)

Comparing this formula with the expression (28) for the self - energy of the electron,

it is easily seen that

9
F.(n;p1,p) = —wF(n;p) (36)
"
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From this identity, we can obtain a very important conclusion. In nonlocal QED
constructed using the modification of the Coulomb potential, the Ward - Takahashi
identity is valid:

0
l [ —
In the second case, one can put
a(py)T", (p1, p)u(p) = u(py) Ay (q)u(p) (38)

where u(p;) and u(p) are solutions of the Dirac equation

(p—m)u(p) =0, a(p,)(pr+m)=0.

Substituting the vertex function (32) into (38) and after some transformations, we

have
w(p)Eu(nip1, p)u(p) = u(py)Au(n: u(p). (39)
Here

i
Ay q) = v fr(n¢%) + 3,7 Tl f2 (1 q°)

1
Oy = Q—i(ku — Vo Vu)

1 1 1
fj<n;q2>=ﬁ / / / dodBdrd(1-a—B—7)a~ ""Lxg (@, 8,7, %), (=12

2
L=ca+(1-a)- 57% (40)

?

)
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gi(e, B,7.4%) = (L—a)*(=n) +2a(L +n) -

L+ (L)l A+ )]
(

- g2, B,7,¢%) = 2a(l — a)(1 + ).

To avoid infrared divergences in the vertex function we have introduced here the
parameter € = mzh /m?, taking into account the "mass” of the photon. Finally, one
gets

1
M) = P ) + 5ot Fald?) (a)

where

1T ) ()M

= - (m; 2. 42
87T 22 _Bioe SiIlQ 7_”7 F(2+77) f3(77 C.I) ( )

Fi(q%)

It is easy to verify that the vertex function A,(g) satisfies the gauge invariant condi-

tion:

¢ u(py) A (@u(p) = 0. (43)

Let us write the first terms of the decomposition for the functions F;(¢?) and F5(¢?)

over small parameters m?l? and ¢*/m?:

Fo(q?) = -2 {1 L (m My 4 1)} 0 (q—Q) (44)

6 4 6 m?

Fi(¢) = —% {3 {ln milQ —op(1) — g} n
+ m?l {h”l # —2y(1) - %} } +0 (;—22) . (45)

We know that corrections to the anomalous magnetic moment (AMM) for leptons are

given by

(A,u)i = (A,u)iQED + (AN)?W + (Au)ffadron + (Alu)nonlocal7

2
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where for example,

(Ap)@ED = 21 — 0.328478455 (%)2 Oy (%)3 e} (%)4 (46)

™

Cy = 1,1765 £ 0,0013
C,=—-0,8+25

and

220 omil? 1
A nonlocal _ g my 1 [ Z (1
premtoced — 24 [P (1 M 42— 20(0)

(i =e, ).

We seen that the first term in (46) is exactly famous Schwinger correction obtained
in local QED. From the experimental values of the AMM of the electron and muon

([25], [26],[27]) and [2§]

e 1 _
Apl) = /’j— —1=5(¢—2) = (1159652180.73(0.28)) x 10 12 (47)
B
and
1
A — P 2 9) — (116592089(63)) x 1071 48
:ue:rp (eh/ZmN) ) (C]N ) ( ( )) X ( )

one gets the following restriction on the value of the universal parameter (or the

fundamental length) I:

1 <7.0x 107 "em for A,u((j()p (49)
1 <26 x 107" em for A,ug’;%,. (50)

Recent theoretical calculations of the AMM of the electron and muon have been
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carried by [29].

D. Vacuum Polarization

Since, in our scheme the propagator S(x — y) of the charged lepton spinor is not
changed, the diagrams of the vacuum polarization i.e., closed spinor propagators (see
Figure 5) of the leptons in our nonlocal QED are studied by the same way as in the
local theory. For completeness we calculate it in e?-order by using d - dimensional

regularization procedure [30]. The result reads in the momentum space:

—~ po —

T @@= -] (51)

where

kawz;;[fidrﬂmm(1+i@%512). (52)

The physical importance of the vacuum polarization in NQED can be explored by

considering its effects on the scattering of two charged particles of spin 1/2.

IV. THE SQUARE - ROOT NONLOCAL QUANTUM
ELECTRODYNAMICS

The purpose of this section is to study nonlocal interactions of the charged square
- root spinors with nonlocal photons within our scheme. Thus, the Lagrangian corre-

sponding to the equation
m2 — O¢(x) =0 (53)
is given by
Ly = ¢*(0)v/m? — 0o (x). (54)

Instead of (54) we consider the Lagrangian density

L%, = =N {B(e, M)(=0)(w, 22) + L, | (55)



for the ¥(x, \) field. Here notation is used

LYy = (z, A)U (A1, A2) ¥ (x, Ao)

N:/ / dhidhapA)p(N2), 8 = iyt 0

Oz,

Uz, A1) = (0,9 (z, \))

Equations of motion

A+ M) (w, )\)) =0

for ¢ (x, A) fields can be obtained from the action

(57)

A= /d%L?b(x)

by using independent variations over the fields 1(y, A) and 1 (y, ) and by taking the

differentiation 5L(1)¢/5E(y, A) and 5(L?¢)T/51/J(y, A). Here we have used the following
obvious relations

0P, Ai) _ 0%(x, N) sy o
Uy, \)  6U(y, ) Pl

(56)
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and definition
(L(1)¢)T =T (2, A\)UT (A1, M) T (, Aa).

It is easily seen that the propagator of the field ¢(x) in (53) is given by equation (9)

Qz) = ——ﬁaw (z) = % /_ T:L dAp(A)ﬁgéw (z) = /_ T:L dAp(A)S(x, A). (58)

In the momentum representation, expression (58) takes the form

o) - [ " IS (59)
where
Sonp) =L ATP (60)

:g)\Q—pQ—is

is the spinor propagator with random ”"mass” A in momentum space.
Our next goal is to study Feynman diagrams in nonlocal square - root quantum
electrodynamics with Green functions (22), (58), (59), (60).

In the "square - root” NQED the S - matrix can be constructed by the usual rule:

S = ExpecT exp {/ d4:ch(:L‘)} (61)
where
Lin(z) = eN {E(q;, M)Ay (a, Ag)} (62)
Ay =y AL ()

and N is given by (56). The symbol T is defined by

(OIT [9 (2, M)d(y, A2)] 10) = 6(M — A2)S (2 — g, A1) /p(Ar) (63)

for the spinor fields. For example, at least for connected diagrams in the momentum
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space one assulnes

Bapec {00} = [ 0560

Epec {71 0(p1)y*(p2)y } =

-/ Z o) {1 851, 852, Ay} (64)

and so on.

The gauge invariance of the "square - root” NQED means that every matrix el-
ements of the S - matrix (61) defining the concrete electromagnetic processes have
a definite structure, and algebraical relations exist between them. In particular, in
the momentum representation, the so - called vacuum polarization diagram like (in

Figure 4) in the second order of the perturbation theory has the form

—~1,s —~1,8

H (k) = (kukl/ - guqu)H (kQ) (65)

ny
and the relation

95, (p)
p,,

= T (. )l (66)

is valid between the vertex function f‘iﬁ( ,q) and the self - energy of the "square -
root” electron if (p). The relation (66) generalizes the Ward - Takahashi identity in
QED. Here in accordance with (64), we have

Si0) = g / RPIveY [ kD)5 - (67)

and

ie?

B = g7 [ 4D = 1)
X Bupee {7"0a+ )70k } =
— i [ aNO) [ dRD (- DS+ RN

~

% S0k, Ny (68)
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where
S p—
’ (A—=D)
and
‘/l(kQZQ)
D(k*, 1) = ——~.
(k75 —k? —ie

Fort the proof of the relation (66) consider the identity

P~ 5056, (69)

Further, it is easy to verify the identity (66) by differentiating (67)over p,, and making
use of the equality (69) as well as choosing other momentum variables in (68) and

assuming q = O,p/ = p+ q¢ = p. The relations of the type
0.1 (0, )2 —pepe =0
follows from the definition

qMExpec. {ﬁ(pl)ﬂwﬁ(pQ)} =4qpu /_T:; /_T:; d)‘ld)‘Qp()‘l)p()‘Q) X

< S0 )8 m% — O(p) — pn) =
_ /_ RFIVeN 8510 — 552, V)] (70)

if ¢ =p1—p2
Now let us demonstrate that the gauge invariance of the vacuum polarization dia-

gram in the "square - root” NQED and its matrix element is given by

—~—s

I[,#) = eEupee {/dder {700 + K}y O0) } =

%

= ¢? / " () / dpTr {w§(ﬁ+ £S5, )\)}. (71)

—m

Here we have used the d-dimensional gauge invariant regularization procedure due to

[31] and the definition (64). After some calculations we obtain the same structure as
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in (65):
s Z’ﬂ-d/Q
Hw(k) = 8r(2) r (2 —~ %d) (kpky — k2gu) ¥
x /_m d)\p()\)/o dvz(1 - x) [N — kK2a(l —2)]* (72)

which is manifestly gauge invariant. Calculation of the matrix elements for if’ (p) and
fif (p,q) can be carried out by the same method as in (27) and (32) where we have
to change m — .

In conclusion, we notice that similar modification of the Newtonian potential (1)
and (5) gives rise to a finite quantum gravitational theory with the causal Green

function for the graviton:

c _ —1 4 —ip:):N ‘/l(_pQZQ)
Guu,pa(x) - (27_(_)42 /d pe Huu,pa(p) X _pQ — e

where the projecting tensor ﬁ pvipo (p) is given by the expression:

T ) = dup@)deo (1) + o (0 up (1) — 2y () (),

pv,pa 3

duu(p) = Y9uv — pupl//p2

and V;(—p?l?) is defined by the same formula (7). Here [ should be changed by the

Planck length:
L= lpr =1/ hGgN = 1.62 x 10" %cm
c

where Gy is the Newtonian constant.
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In this paper, we study the statistical anisotropy of the cosmic microwave (CMB)
radiation in an approach that uses pseudo entropies of quantum-1 states and re-
spects rotational symmetry. We simulate large numbers of randomly generated
Gaussian CMB data sets and build probability distribution functions (PDFs). We
then compare the predicted artificial data with the real measured data. We use
WMAP 9 years coadded data as well as newly released high resolution Planck
satellite data. Furthermore, we introduced a new efficient method of eliminating
the foreground contamination of the CMB by means of a decomposition procedure
of products of spherical harmonics, which is equivalent to applying a mask on the

sky map up to a given accuracy.

OUTLINE

First of all, brief comprehension of what CMB is, what it corresponds, how we mea-
sured it, is provided. Furthermore characteristics and data products of satellite mis-
sions dedicated to measure the CMB are introduced.

Followed with this introduction, software packages which is main tool for cosmo-
logical data are discussed, and their applications in our work are explained in details.

In the third section, we introduced two methods which are qualitatively new ways to
evaluate randomness of collected data by means of comparing real data with artificially
generated one which follows specific statistical distribution.

In next section, computational results are graphically expressed and some anomalies
are observed and discussed. Then the summary of the work continues in the last

section.



79

I. INTRODUCTION

Main motivation of this work arises after findings of Schupp and others’ work [17]
which observes extreme anisotropy of CMB maps with galactic foreground at lower
multipoles calculated by methods which will be introduced latter. These anomalies
concluded to be result of galactic foreground contamination. This leads to further
interests of calculation of higher multipoles of foreground reduced maps.

The Cosmic Microwave Background radiation (CMB) is the electromagnetic ra-
diation coming from every direction of the universe, which was discovered in 1964
experimentally and led two American radio astronomers, Arno Penzias and Robert
Wilson, to win the Nobel prize in 1978. The term - "microwave” derives from its
wavelength range that is few centimetres.

Its intensity is almost uniform all over the sky, except for tiny wrinkles. Regardless
of the exceptional wrinkles in the intensity, CMB has the spectrum of black body
radiation[28] at temperature of Topp = 2.72548 + 0.00057K[10] which was experi-
mentally well confirmed by the FIRAS instrument[11, 20, 30] on the COBE satellite.

The tiny wrinkles, i.e. small variations of the temperature from the theoretical
value of the black-body radiation, are of great interest to scientists. Many questions
arises from its anisotropy. The current data has been used to test the inflationary
model[15] of the universe which is suggested to have happened after the big bang.
According to the Big Bang theory, the tiny variation is the remnant of a statistical
density variation of the matter after the Big Bang, which evolves in time and now

seen as it’s in the CMB temperature variation.

AT (97 ¢) = T(ev ¢) - TCMB

This small variation is order of a few K (indeed ~ 107°K).

One of the difficulty, which is the inseparable part of the CMB data, is the fore-
ground contamination of the radio wave, since there are many other natural sources
of the electromagnetic rays, that are of the same wavelength range of the CMB as
well as have strong enough intensity to ruin the pure cosmological rays. Therefore
one mainstream among the reseachers of the CMB is to remove or to avoid these

contamination[7, 24].
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The CMB Data Products

The PLA (Planck Legacy Archive) is the highest resolution map, as yet, provided
during the full operation of the ESA’s (European Space Agency) mission - Planck
satellite [2] which released its latest data (Planck2015) products in 2015. But we
used the first publicly available Planck data (PLA) which was released in March,
2013, since the resolution of the maps are essentially same, i.e. expansion parameters
of spherical harmonics are same at higher as well as lower multipoles. Before this
release, the maps with less resolution were provided in series of two years gap from
the Wilkinson Microwave Anisotropy Probe (WMAP)[4] - the mission of National
Aeronautics and Space Administration (NASA). Both missions provide their own
galactic foreground reduced maps, i.e. the Internal Linear Combination (ILC) map

of the WMAP [5, 18] and the SMICA [3] map of the Planck mission [19, 31].

1. NASA: LAMBDA Archive and WMAP Mission

The Legacy Archive for Microwave Background Data Analysis (short for LAMBDA)
provides the archive data, which are related to the analysis of the Cosmic Mi-
crowave Background (CMB) radiation, and the software tools which are useful in
their calculations[l, 22, 29].

For some of these bands, i.e. Q, V, and W, foreground reduced versions are avail-
able, i.e. the galactic background emission as well as the thermal dust emission[5, 18]
were removed from them. The removal procedures are done with help of the calcula-
tions and the models which are derived from the other bands, i.e. K and Ka. But we
could not accept them as completely free of external foreground contamination.

The ILC map[14] (Figure 1) is produced from a weighted linear combination of
smoothed version of the five temperature maps which are formed by coadding full 9
years data. The weights are chosen to maintain the anisotropy of the CMB map while
minimizing other contamination sources such as galactic foreground, and thermal dust
emission, etc..

The ILC maps is believed to be a good and reliable estimate of the CMB signal on
angular scales greater than 10 degrees with negligible instrument noise, over the full
sky. But on smaller scales there is a significant structure in the bias correction map

that is still uncertain[29].
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FIG. 1: The Internal Linear Combination FIG. 2: The foreground reduced product of
map of the WMAP: without any scaling fac- the Planck Legacy Archive: SMICA. The
tor and the physical unit of the color bar is color bar units is in pK. It has four times
in mK finer resolution than ILC.

FIG. 3: *
Reproduce by MAP2GIF facility of Healpix [22] software package.

2. ESA: Planck Mission

To emphasize, the Planck (European Space Agency mission) [26] has nine spectrum
lines ranging from 35 MHz to 1 THz while the WMAP [4] has five bands of frequencies
ranging from 23 GHz to 94 GHz. The foreground reduced maps are made out of
combinations of all those different frequency maps and they are the most reliable
maps for the analysis of CMB anisotropy in the sense that all the possible external
contamination are removed in several methods and procedures [3, 5, 18].

In March 2013, the Planck mission released its public data products (PLA - Planck
Legacy Archive), which gives the CMB sky maps of four times higher resolution
(compare the Figures 1 and 2) than the WMAP mission maps[9]. Also it produces
the temperature intensity and the polarization maps at each different frequency bands.
Their comparison with the WMAP frequencies as well as the black-body radiation
power density is shown in the Figure 4. PLA frequencies cover both ascending and
descending parts of the graph, as well as the frequencies close to the peak of the
graph.

The PLA also has its foreground reduced maps, i.e.the SMICA mapl3] (Figure 2)
similar to the ILC map of the WMAP. We will heavily concentrate on calculations of
the data derived from this foreground reduced maps, the SMICA, as well as the ILC

maps.
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Black body radiation spectrum at CMB temperature: T=2.725K

7
Planck freq.
WMAP bands
6 rtht<t—t—t By(T) -~ 1
5 NN} U U NN SUU SRNIUU S U S
S
R | ] A L —
(]
[&)]
S
'_6 3 BTN Y D PR I
9]
o
2 - R B B R R R
1 N K U OO UNUN DU NOUNURUUN SNSRI U O
O ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
W \ Q Ka K

Wavelength A (mm)

FIG. 4: The Planck frequency bands on the background of the black-body radiation graph
at the CMB temperature, Tcpp = 2.725K.

The dashed blue line draws radiation of the black-body while each green vertical line corre-
sponds to one of the Planck’s nine frequency bands, and pink colored lines are of the WMAP’s
frequencies.

II. MANIPULATING FITS FILE

The name FITS|[23] is an abbreviation of: Flexible Image Transport System. Its
first main usage was interchanging astronomical image data and further developments
took place in the late 1970’s. Following this, by 1981, a journal[27] describing exact
specifications of the format, FITS became the de facto standard of data transfer
between astronomers[23]. Since the file format is famous among astronomers, there

are several software packages which are developed and provided from NASA[L, 16, 22].

A. HEALPix

The HEALPix is an abbreviation for Hierarchical Equal Area isoLatitude Pixeliza-
tion of a sphere. This pixelization produces subdivisions of a spherical surface which

divided into equal area pixels. The Figure 5 shows the partitioning of a sphere at
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FIG. 5: A simple illustration of how the pixelization of grid lines carried on a sphere in the
HEALPix Scheme.

The green sphere is divided into twelve equally sized surfaces which correspond to the lowest
possible resolution of the HEALPix, i.e. Nyes = 1 and with Ny — 12-287e= pigels; the other
colored (yellow, red, and blue) spheres correspond to HEALPix resolutions of 2, 8, and 4
respectively. On the blue sphere, each pizel covers solid angle of 7.3°.[12]

progressively higher resolutions, from left to right.

Another property of the HEALPix grid is that the pixel centers, represented by the
black dots in Figure 5, are distributed on discrete number of rings of constant latitude,
the number of constant-latitude rings is dependent on the resolution of the HEALPix
grid. The formulation is Ny, = 2Nrest1_ 1 which derives from the following recursion

relation[12]:

Niat(Nyeo—1) +1
2

2 =2Nayn.

Nrat(Nves) = Nrat(Nyeo—1) T ree—1) T 1

Jet Propulsion Laboratory, California Institute of Technology[22], develops a soft-
ware package which is intended for manipulation, visualization, simulation, and analy-
sis of data stored in HEALPix grid scheme. The most current version of the software
is HEALPix 3.00 updated in December 2012. The package has several facilities-
subprograms (ALTERALM, ANAFAST, HOTSPOT, MAP2GIF, MEDIAN_FILTER,
PLMGEN, SMOOTHING, SYNFAST, and UD_GRADE) for specific tasks and func-
tions. Among them, ANAFAST, MAP2GIF, and SYNFAST are of our interest and
use. Since we use them in our analysis of the CMB data; let’s have closer look at

their details[8, 13]:
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calculations and analysis
Sky maps [Mathematica]
(at different frequencies)

HEALPIx
WMAP and Planck \ T

(mission data releases) .
ASCII file
FITS file FITS VIEW [

(human readable format
(binary strings) (FV) L as well as high level
p

rogramming language friendly)

(extracted a_lm's
in FITS formatted file)

FIG. 6: Block diagram: A brief explanation of how we extract a;m’'s in ASCII format which
are further analyzed in MATHEMATICA codes conveniently.

First, we compute integrals over the sky map to extract spherical harmonic expansion co-
efficients, aim’s, by means of HEALPix facility - ANAFAST[22] which reads and produces
FITS formatted files. Then we convert binary data in the newly formed FITS file into ASCII
formatted file with help of FV - FITSVIEW]1] software package. New ASCII file is saved as
some *.txt file and ready to be read by MATHEMATICA codes easily. At last, everything else
is carried out in the programming and gives results of the computations.

B. FITS VIEW

The FV is an acronym for FITS VIEW which is the interactive editor for files
formatted in FITS. FV is an easy to use, graphical interface program and capable of
viewing, editing, and handling the both images and tables written in the FITS file.

For example, with help of FITSVIEW][1], we can extract decimal expressions of
the data from any FITS file containing the binary formatted data and save them in a
separate file. In this way, we get a new files which are convenient to use in high level
programming languages, i.e. MATHEMATICA. A brief explanation of the procedure

can be illustrated in a simple block diagram (Figure 6).

III. MATHEMATICAL EXPRESSIONS

Any scalar field on a sphere can be expressed as a series of spherical harmonic
multipoles. Since the spherical harmonics form a complete orthonormal basis set of

the Hilbert space of square-integrable functions over the 2-sphere. In mathematical
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language:

f SQ —-C = f Z Z flm}/lm 7
b =0 m=-1 (1)

//}/21,7111 (97 Cb) ifl;,mg (97 Cb) sin 0 (de) dqb = 5m1,m2511,12
0 0

Again, indeed the temperature difference on the whole sky is a real function from a
two-sphere to a set of real numbers, AT : So — R, therefore it can be expanded in

the spherical harmonics[6, 17, 21, 25]:

[e9) l
AT (0,0) = > aunYim (6,9) (2)
I=0 m=—1
Where
Yim (8, ¢) = num P{"™ (cos 0) e (3)

with ny,, and P/ (cos#) are the normalization coefficients and the associated Leg-
endre polynomials respectively. The normalization coefficients are defined in several

different way depending on an area of use, i.e. a research field:

— 204+ 1 (I —m)!
A T4 (T m)!

The coefficients a;,, can be calculated by the following formula, which immediately

derives from the orthonormality condition (Equation 1).

2w 7w

// ®) Y, (0,9)sind (dF) do

This is the equation calculated within the CMB data analysis software packages, i.e.
the HEALPix-ANAFASTY[13, 22].
Deriving from properties of associated Legendre polynomial, spherical harmonics

have the following property:

Yim = (D" Y, (4)
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For real functions : So — R, there is an especial condition on the expansion coefficients

arm by the Equation 4, so to say "reality condition”:

1 = (1) 4 (5)

Since the CMB temperature function over the sky is a real function, our randomly
generated a,,’s should be constrained by the Equation 5.

The temperature power spectrum or the variance of the CMB is defined by:
Gl = (i i) (6)

Indeed, the expression (AT )2 = w;TlZCZT is analyzed to estimate the amplitude of

the multipole moments.

A. Pseudo Entropies

We are identifying the spherical harmonic multipoles with the quantum mechanical
state vectors in the Hilbert space, in which we have a property of the normalization,

ie. () = 1, therefore we need to normalize the spherical harmonic multipoles.

Ti(0,9) — [¥)
l
Z A Yim (0, 0)  — Z A [l

m——I1 m——I1

with the following condition[6]: of the normalization

l
> laif* =1or (gly) =1 (7)
m=—1
This condition won'’t affect the comparison of the pseudo entropy between the real
CMB data and the randomly generated samples since the both of them are normalized.
From now on, we use a;,,’s for the already normalized coefficients in our notations.

Von Neumann entropy:

S(p)=-Te(plup) =~ »  Aln) (8)

AEEV(p)
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When we encounter values of A = 0, we take the zero value 0 = 01n 0, since in the
limiting case we have: ii_l%xlnx = 0. If we have the eigenvalues of A € {1,0,...,0},
i.e. pis the pure density matrix, then this case is of no interest to us. Therefore we
need to get a mixed density matrix pized- There are two methods mixing the pure
density matrix with itself, in some sense. We will use both of them in our analysis

and calculations.

B. Angular Pseudo Entropy

One way of mixing the density matrix is by means of the angular momentum

operators, Ly, L,, and L. or Ly, Lo, and L3[6, 21, 25]:

] 3
[ = p = prmived = ) Z LipL; (9)

1=

Since the angular momentum operators preserve rotational symmetry, the new mixed

density matrix, as well as the entropy are invariant under rotational transformations[6,
25].

If we introduce and use the ladder operators into the Equation 9:

L+ — L;); ‘I‘ ZLy
L_=1L,—iL,

which have the following commutation relations:

[L,,L_]=2L,
[sz L+] = L+
[L.,L_]=—-L_
1 1
2 _ 2 _ g2t 1
L’ = o LI=Ll+ DL+ 5L Ly
Z:x’yﬂz
then, our mixed entropy is written as the following:
1
Pmized = () (b |+ [ ) (| + |h=) (o] (10)

[+ 1)
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where

1

V2

1

Lylg), |-)= NG

|1/J+> = L—|1/J>7 and |1/Jz> = Lz|1/]>

The ladder operators have the following relations with their operations on the state

vectors:

Le|l,m) = mll,m)

Lyll,m)=+1(1+1)—mm+1)|,m+1) (11)
L|l,m)=+1(1+1) —m(m—1|l,m-1)

By using above expression we can calculate the new mixed density matrix and there-
fore its entropy (our MATHEMATICA code for the angular pseudo entropy uses these

expressions).

C. Projection Pseudo Entropy

The another method of the mixing density matrix is to expand the dimension of the
density matrix by tensor multiplying it with a unit matrix and thereafter to project
the tensored space into a lower dimensional space. A brief scheme of the procedure

is[6, 25]

2041
=P = Pmized = 577 T N 7 P ;)P
61 = p = prsses = 57 B (08 (L) P
The tensor product on the right hand side can be projected in the higher dimensional

space by means of the Clebsch-Gordan decomposition coeflicients[6, 21]

b1 +12
l1,m1) ® |l2,m2) = Z CG (l1,m1,la,ma, [, my +m2) I, m)

I=|m1+ma|

The summation is over the multipole momentum number with the condition to hold

the triangle inequality with [1,and ls, i.e.:

=l <1<+l

|m1 4+ mo| <1 magnetic number should exceed the momentum number
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The entropy calculated from the mixed density matrix described above is the " Pro-
jection Pseudo Entropy” and it can be written as the following when we insert the

Clebsch-Gordan coefficients into the formula:

(1m) (%)
( 2(1-+j) )
I+j+m+tk

Prit,m) & |j, k) = L+ j,m+ k) (12)
J

The Clebsch-Gordan coefficients vanish except when m = mj +ms and the [;s satisty

the triangle inequality.

D. Gaussianly Distributed Random ajm’s

This is the expression used for generating gaussianly distributed random samples

of the spherical harmonic spectral coefficients|21]:
Cim = V—v Inzrexp (27iy) (13)

where both x and y are uniformly distributed variables between 0 and 1, i.e. =,y €

(0,1]. If we calculate a variation of these random data:

1
Var (cim) = (leim|?) = [(cim) 2 = (cim|?) = /—vlnxdx oy
0

since

<Clm> = /ClmdP (Clm) = Clm (x,y) dpP (l‘,y) =

|
O ——

1
/ v—vInzrexp (2riy)dedy =0
0

and the integral of exp (27iy) from 0 to 1 is zero. Also
lcim| = |[V—vInzexp 2riy) | = |V—vInzx||exp 2riy) | = V—vinz

since |e*®| = 1 for Yo € R. This implies that the variance of the random variable is

only dependent of one parameter: v. Therefore, we can choose an arbitrary v for our



90 M. Otgonbaatar et. al., Cosmic Microwave Background Anisotropy Analysis

need or convenience later when writing the MATHEMATICA codes.

IV. COMPUTATIONAL RESULTS

In this section we illustrate the graphs and the figures which are results of the
computation of the above mentioned mathematical setups. To emphasize in advance,
the WMAP and the PLA are the two independent data source for the CMB radiation
analysis. Therefore we try to compare the two data sets whenever we encounter an
issue or an analysis related to the their consistency.

We particularly investigates the entropy value difference between the foreground
reduced maps of the WMAP and the PLA (Figures 1 and 2). The resolution com-
parison of the two maps could be seen easily: the latter (bottom) map contains four
times more information than the former (above) one. The both ILC and SMICA show
relatively similar plots, see the Figure 7:

Since the two maps are independent of each other and, their foreground reduction
methods and algorithms are different, thus the numerical values of the pseudo angular
entropy are not exactly same.

On the graphs (Figure 7) confidence interval of 68% and 95% of percentage as
well as mean and median of randomly generated data sets which follows Gaussian
distribution are drawn. The above graph is for comparison of WMAP with random
data sets while the bottom graph is for comparison of PLA map.

Key observation of these graphical representation is that at multipoles | =
5, 16, 28, 30; entropy values of both WMAP (ILC) and PLA (SMICA) map lie
outside of envelope curve of 95% confidence interval which is produced with the Gaus-
sianly distributed random data set. Our main motivation was to find such anomalies

of entropy values at higher multipoles.

V. SUMMARY OF RESULTS

Our calculation of the pseudo entropy of the WMAP 9 year maps showed anomalies
at low multipoles, i.e. large angular scales. Particularly [ = 5, 16, 28 and 30 are of
our interest having extremely unlikely pseudo entropy relative to the Gaussian ran-
dom and statistically isotropic data. We checked numerically the rotational invariance

of the formulation of the pseudo entropy and confirmed it. With the capability of
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FIG. 7: The first plot: foreground reduced WMAP product - ILC map, with its angular
pseudo entropy contrasted on the envelope borders of confidence interval. The second plot:
is of PLA foreground reduced map - SMICA.

generating large number of sample data in short time, we combined the PDFs (Prob-
ability Distribution Functions) into a single graph - the Confidence Interval Envelope
Graph which makes our further analysis more valuable.

We expanded our data source with the Planck satellite data after it released its
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first 18 months’ observational data. We found that our interested multipoles still
show the same qualitative characteristic in the Planck data. But we observed that the
pseudo entropy comparison between the WMAP and Planck data were fairly different
at higher multipoles. Besides that we used the spherical cut method for removing
the galactic background. Also we introduced a new method to eliminate foreground
contamination. This gives the result that the foreground reduction process may have
affected the entropy values to be shifted upward, i.e. by increasing the values. By
reproducing the interpolated graphs of the pseudo entropy, the visual comparison
between two or more sets of data becomes very effective, e.g. when comparing the
ILC and the SMICA maps[14].

The new method, which actually removes the foreground by means of masking with
the given mask files, takes relatively long time on the calculation, therefore we’ve
managed to create PDFs at only few multipole numbers, [ = 5, 6, ..., 10. Even if
it requires long computational time, such a procedure that of masking the sky map
in real space by means of one of the HEALPix facilities, then analyzing its power
spectra is almost impossible when dealing with large number of data sets. Therefore,
the new methods is a new fast gateway to do both the masking and the analysis of

the sky map at once.
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We report on the atomistic origin of the piezoelectric effect in AIPO4 by means
of theoretical investigations in framework of density functional theory using the
CRYSTAL14 code. The elastic and piezoelectric properties of Berlinite are related
to their AlO4 and POy tetrahedral units, especially the Al-O-P bridging angle and
the strength of the Al-O and P-O bonding. The calculation show that the Al-O
bond clearly is of ionic nature but displays a small bond change density between
next neighbors only. Under influence of an external field the changes of the P-
O bond lengths and the tetrahedral O-Al-O angles are one order of magnitude
smaller than those of the Al-O bond lengths and Al-O-P angles between neighbor-
ing tetrahedra. Since all changes of bond lengths are small, the atomic origin of
the piezoelectric effect mainly can be described by a rotation of slightly deformed

AlO, tetrahedra against the POy ones.

I. INTRODUCTION

a-quartz is a well-known piezoelectric crystal. MPO4 (M=Al, Ga, Fe) quartz type
compounds have been widely studied due to their large amount of some physical
coefficients[1, 2]. The interaction between a crystal lattice and an external electric
field is the basis of many fundamental physical phenomena, such as piezoelectricity
inducing a change of unit cell parameters and polarization. Although most of these
phenomena are well described and understood on a macroscopic level, relatively little

is known about the underlying atomic processes. Low quartz a— Si0y, trigonal, space

*Electronic address: tuvjargal®num.edu.mn
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group P3:21 or P35,21 is a well-investigated crystal and widely used for technical
applications. AlPO4 has the same crystal symmetry as low quartz. Compared to
SiO4 the unit cell of AIPO, is twice as large in ¢ direction. Its unit cell can be
derived from SiO4 by an alternating replacement of the Si sites by Al and P atoms.
In literature, the explanation of the piezoelectricity in quartz often follows the model
introduced by Meissner [3]. He proposed a displacement of the Siy; and O,_ ionic
sublattices against the external field originating a change in the lattice parameter.
This ionic model is not realistic because the Si-O bonds in SiO4 are partially covalent
in nature. Meanwhile one knows that the Si-O bond in quartz is not purely ionic, it
also contains covalent contributions[4, 5. D’Amour et al. [6] have investigated the
high pressure dependence of the structure and found that the individual Si-O bond
lengths and the O-Si-O bond angles changed very little at high external pressure. The
main effect is the change in Si-O-Si angles and O-O distances between the different
tetrahedra. Generally, one can suppose that the bond angles between the tetrahedra
change more than the Si-O bond lengths under influence of any external perturbation.
It is well known, that the coordinates of atoms within the unit cell can be recon-
structed from X-ray diffraction data. By measuring the electric field induced changes
of integrated intensities of Bragg reflections one can investigate the origin of the in-
verse piezoelectric effect in a crystal. The influence of a high electric field on the
Bragg reflections has been studied in a number of works [7]. In some cases they might
be caused by extinction effects and not by the electrostriction because the field may
create structural defects and subsequently causes a change from the dynamical into
the kinematic regime of X-ray diffraction. As shown in previous experiments [8] the
electric field of about E < 3kV/mm alters the integrated intensity of Bragg reflections
in the order of 1% only. Therefore the combination of an X-ray diffraction experiment
with the electric field modulation technique is suitable for these studies because of
the eliminations of experimental fluctuations. Generally, the modulation technique is
useful for the evaluation of very small physical effects with high accuracy. We have
applied this method for studying the inverse piezoelectric effect in AIPO4. For the
first time this experiment also was performed at low temperatures[9].
The purpose of the present work is to investigate the atomistic origin of the piezo-
electric effect in AIPO4 together with structural, elastic and piezoelectric properties
of the crystal by means of density functional theory (DFT) using the CRYSTAL14

code and experimental data[10].
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II. THEORETICAL BACKGROUND

Calculations were performed with a standard version of the ab-initio code CRYS-
TALI14 [11]. Atomic orbitals used for this study are Gaussian type functions (GTO),
where each GTO is the product of Gaussian functions multiplied by a real solid
spherical harmonic. Further we used the BSLYP (Becke’s three-parameter exchange
function[12] and the nonlocal Lee-Yang-Parr correlation function[13])to form the
Hamiltonian. Several properties of crystalline materials can be computed by con-
sidering strained configurations of the structure: elastic and piezoelectric tensors, for
instance. The elastic constants C; are related to the second derivatives of the ground

state energy calculated with respect to a certain strain component as follows:

1 O*E
= — . 1
Ci Vo {3771'377;}0 W

where Vj is the unit cell volume, n is the rank-2 symmetric tensor of pure strain
and elastic tensor has been written as a rank-2 66 tensor. This tensor is symmetric
so that it has a maximum of 21 independent elements. A Taylor expansion of the

unit-cell energy to second order in the strain components yields:

° . [OE 1 [ E

B =£0)+ 3 |5 w53 gy | o )
has been considered for the calculation of the elastic constants. The strain 7 is
described by the relative difference of the actual lattice parameter and its value and
minimum energy. E(0) stands for the energy of the equilibrium configuration and
7; refers to the strain components expressed according to Voigt’s notation (i = 1,6).
The second derivatives of ground state energies are evaluated numerically.

In Crystall4d code the polarization can be computed either via localized Wannier
functions or via the Berry phase (BP) approach. For our computation we used the
BP approach where the piezoelectric constants can be written in terms of numerical

first derivatives of the BP ¢; with respect to the strain:
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v = i ) 3
¢ 2rV l al Ny ()

where q;; is the i-th Cartesian component of the [-th direct lattice basis vector a;. A

simple direct connection exists between direct e and converse d piezoelectric tensors:
e=dxC, d=exS. (4)

where C'is the fourth rank elastic tensor of second derivatives of energy with respect
to pairs of deformations and S = C~1 is the fourth rank compliance tensor[17].

As for the computation of the piezoelectric tensor, Eleven 7; strain values in the
interval between [0.020 and 40.020] were considered for the fitting. For each value of
7; the three Berry’s phase components 1,2 and ¢s are computed, corresponding
to the phase differences of the state with and without strain in the three directions
of the space (x, y, and z, respectively). Because of the uniaxial strain the symmetry
of the unit cell becomes reduced and additional degrees of freedom have to be

considered for numerical analysis[15].

III. RESULTS AND DISCUSSION

The charge density distribution of the unstrained (cubic) ground state was
examined first in order to characterize the character of the different bonds within
the unit cell. The ground-state electron charge density is an observable of primary
importance. The total electron density maps provide a pictorial representation of
the total electronic distribution. However, more useful information is obtained by
considering difference maps, given as a difference between the calculated total electron
density and any "reference” electron density. In present case the "reference” density is
a superposition of charge distributions of isolated atoms. Difference electronic charge

density can be expressed as follows:
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where p(7) is crystal electron density and py(7) is "reference” electron density.
FIG.1 displays the difference densities in the vicinity of the Al and P atoms in a) plane
of O-Al-O bond, b) plane of O-P-O bond. Contours are given in steps of Ap(r) = 0.002
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FIG. 1:  Difference electronic charge density distribution in a) plane of O-Al-O bond, b)
plane of O-P-0 bond

e/A®. Following these contours the origin of chemical bonds between the atoms can
be classified based on charge density distribution between two neighbored atoms. The
O-Al bond has little bond charge density between the atoms with maximum close to
Al which explains the partially ionic character of the bond. On the other hand the
O-P bond is more covalent in nature than the Al-O bond visible by a much larger
bond charge between the phosphorous and oxygen atoms.

It is possible to have interatomic bonds that are partially ionic and partially covalent,
and, in fact, only a very few compounds exhibit pure ionic or covalent bonding. For
a given compound, the degree of either bond type depends on the difference in their
electronegativities. The percent ionic character (%IC) of bond between element A

and B may be approximated by the expression
%IC = {1 —exp [—(0.25)(X4 — Xp)*]} x 100 (6)

where X4 and Xp are electronegativities for respective elements. Using Pauling

electronegativity scale [14], we can obtain the percent ionic character (%IC) of the
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bonding between the atoms in AIPO,4. The crystal contains P (electronegativity value
= 2.19), Al (1.61) and O (3.44). Accordingly, the ionic character of the P-O bond is
32.33% and Al-O bond are 56.7% due to the bonds between P-O are more covalent
whereas the bonds between Al-O are more ionic in character.
The berlinite (AIPOy) crystal structure belongs to the trigonal space group P3;21 (
or P3,21), there are six nonvanishing independent components of the elastic tensor,
namely, Cy1, Cq2, Ci3, C14, Css, and Cyy.

This leads to an elastic tensor, written using the Voigt’s contracted notation, con-

taining the six independent elastic constants,

(Cy Chs Cis 0 Cis O

0 Cip Cis 0 —=Cy5 O
0 Cs3 0 0 0
0 0 Cyu 0 Cis
0 0 0 Cyu O
0 0 0 0 066_

0
0
0
0

For trigonal and hexagonal systems, Cgg elastic constant can be computed from the
Cyy and Cps values using by Cgs = (C11 — C12)/2. To compute the complete elastic
tensor of AIPO,, the three different strain values 1y, 173 and 14 have to be applied,
where 11 = €11, 13 = €33 and 174 = 1/2(e23 + €32). Here ¢;; are the components of
strain tensor. Each deformation allows for the evaluation of all tensor components
of the corresponding elastic constants, due to the calculation of the analytical en-
ergy gradients. For each of the considered strains the elastic constants have been
calculated. In order to compute the independent constants the necessary strains are
automatically selected by the program after a symmetry analysis of the crystal. Con-
sidering eq.1 the computed values (in GPa) of the six independent elastic constants
for the Berlinite are shown in Table.I together with some experimental values.

Our computed values of elastic constants are in good agreement with other theoret-
ical values. Also few of our elastic constants are in good agreement with experimental
data. Because of the well know difficulties in the experimental determination of elas-
tic constants, different values of experimental parameters have been reported [18, 20)]

which , in few cases, are smaller than the theoretical data. In quartz type compounds,
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TABLE I: Theoretical and experimental values (in GPa) of elastic constants of

Berlinite.

Ci;| Our |Theory[15] |Experimenta1[18]
Cip| 84.13 87.9 64.0
Cs3]113.41 122.4 85.8

Cyq| 46.70 43.3 43.2

Cha| 22.67 27.1 7.2

Cis| 25.52 30.4 9.6
C14|—10.28) —11.2 —12.4

Cesg| 30.72 30.4 28.4

only two independent constants of the piezoelectric tensor are non-zero. Therefore

the piezoelectric tensor can be written as

er1 —enn 0 ey 0O 0
e; =10 0 0 0 —eyqs —2e11
0 0O 0 0 0 0

Using the Barry phase method the computed values of direct and inverse piezoelec-
tric coefficients in AIPO,4 are shown in table. Il
TABLE II: Theoretical end experimental values of direct (in C/m?) and inverse (in
pm/V) piezoelectric coefficients in AIPOy4
Our |Theory [16]|Experimental [19]

e11]0.182]  0.208 0.22
e14]-0.05]  -0.16 -0.15
d110.301]  0.30 0.365[9]

d14/0.248 1.62

These results in good agreement with theoretical and experimental data.

Considering the three strain components 71, 173 and 74 we evaluated changes of
bond lengths and bond angels. The results are displayed in fig.2, fig.3 and fig.4. It
turns out that the changes of the P-O bond lengths are always close to zero and
changes of the Al-O bond lengths are of the order of 0.57%. This is related to the
different strength of Al-O and P-O bonds, because, the O-Al bond is mainly of ionic

character but the O-P bond is of more covalent nature. On the other hand the
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FIG. 2:  Ewvolution of bond length and bonds angle in AIPO4 under application of m strain.
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FIG. 3:  Ewvolution of bond length and bonds angle in AIPO4 under application of ns strain.

change of O-P-O bonding angles are larger compared to the changes of O-Al-O one.
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FIG. 4:  Ewvolution of bond length and bonds angle in AIPO4 under application of na strain.

The change of Al-O-P bonding angles of individual PO4 and AlO4 tetrahedral are
between 0.2% and 1.9%. PO, and AlOy4 tetrahedral distortions can be closely related
to the Al-O-P angle and Al-O and P-O bonding type. Therefore the atomic origin

of the piezoelectric effect in AIPO,4 can be described by geometrical characteristics of

PO, and AlO,4 tetrahedral units.

IVv. CONCLUSION

We have summarized the elastic and piezoelectric properties of Berlinite. The
elastic and piezoelectric properties of AIPO, are related to their AlO4 and PO, tetra-
hedral units, especially the Al-O-P bridging angle and Al-O and P-O bonding type.
From charge density difference maps and considering the percentage of ionic character
(%IC) of the different bonds we have obtained that the O-Al bond has little charge
density between the aluminum and oxygen atoms only, but the O-P bond has a much
larger bond charge between the phosphorous and oxygen atoms and the ionic charac-
ter of the P-O bond is 32.33% and Al-O bond are 56.7%. Therefore the P-O bonds are

more covalent whereas the bonds between Al-O are more of ionic character. Consid-
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ering eq.1l and using the Barry phase method we computed the elastic constants and
the direct and inverse piezoelectric coefficients of Berlinite. The obtained data are in

good agreement with theoretical and experimental results published in literature.
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